稠油降黏剂驱提高采收率机理
2020-04-14魏超平李伟忠吴光焕邓宏伟孙业恒闵令元
魏超平,李伟忠,吴光焕,邓宏伟,孙业恒,闵令元
(中国石化胜利油田分公司勘探开发研究院,山东东营 257015)
胜利油田普通稠油油藏地质储量为5.27×108t,以蒸汽吞吐和水驱开发为主,目前正面临着采收率低、经济效益差等问题。随着国家环保要求的提高,传统烧渣油生产蒸汽的热力采油技术受到限制。为保证稠油正常生产、提高稠油油藏开发效果,目前亟需一种非热力采油的技术,它应具有较好的经济效益且能达到目前环保要求。
改善普通稠油驱替过程中油水黏度比主要有2种途径:增加驱替相黏度或者减小被驱替相黏度。在提高驱替相黏度方面,主要是应用聚合物驱,但根据筛选标准,聚合物驱主要适用于黏度小于150 mPa·s 的原油,在矿场实践已取得显著效果[1-4],中外学者在此方面也进行了大量的研究,对其提高采收率机理进行了细致的分析[5-12]。而单独采用化学剂使被驱替相黏度减小的矿场实践和理论研究却很少,目前降黏剂的使用主要是和蒸汽一起,用其辅助蒸汽开采特稠油或者超稠油,同时形成了一些有效的开发技术,如HDCS和HDNS等[13-16]。油藏工程人员主要通过测试降黏剂与地层流体的配伍性、降黏率、乳状液的稳定性等指标来确定化学降黏开采稠油的方法是否可应用于油藏[17-18],并根据这些测试结果进行了矿场应用,但主要是采用吞吐的方式,降黏剂驱替的方式在稠油油藏的应用情况尚未有报道。目前相关研究主要是围绕降黏剂驱的驱油效率及注采参数进行,例如,王剑峰等通过岩心实验指出降黏剂驱能大幅提高驱油效率,并优化了注入时机、注入浓度等参数,但未对微观驱油机理进行研究[19-20]。采用胜利油田草4 块原油样品,应用单管填砂驱油模型和微观玻璃刻蚀驱油模型进行实验,对比水驱和降黏剂驱剩余油和驱替流线的变化,得出降黏剂驱提高采收率的机理,为降黏剂驱这一开发方式提供理论支持。
1 实验部分
1.1 实验用油及降黏剂性能
实验用油:胜利油田草4 块沙四段油井脱水原油与煤油(国药)按照一定比例配制而成,使其在室温下和地层条件下保持相同的黏度341 mPa·s。
实验用水:草4 块Es43 单元地层水,NaHCO3型,矿化度为6 400 mg/L。
对10 个降黏剂厂家所送降黏剂样品进行盲选测试,最终选定J10 降黏剂为最优产品。该产品为水溶性乳化型降黏剂,在质量分数为0.3%时降黏率为82.1%,界面张力为0.34 mN/m,具体参数见表1。
1.2 实验条件及过程
1.2.1 单管填砂驱油模型实验
实验目的:分析对比水驱和降黏剂驱驱油效率。
模型参数:根据胜利油田草4块实际地层参数,为对比不同驱替方式开发效果,制作2 个石英填砂管岩心,岩心长度均为30 cm,直径均为2.5 cm,两者气测渗透率相近,分别为256 和225 mD,其具体参数见表2。
表1 质量分数为0.3%的J10降黏剂主要性能参数Table1 Main performance parameters of J10 viscosity reducer with a mass fraction of 0.3%
表2 单管填砂岩心参数Table2 Parameters of single-pipe sand-packed core
实验步骤包括:①让岩心饱和水,即岩心抽真空后注入地层水,至岩心出口端出现连续水滴。②以实验用油驱替岩心中饱和的水,至岩心出口端出现连续油滴,认为完全饱和油。③1 号岩心注入地层水驱油,注入速度为0.25 mL/min,直至含水率为98%以上。④2 号岩心采用质量分数为0.3%的J10降黏剂驱油,注入速度和步骤③保持一致,直至含水率为98%以上。
1.2.2 三维填砂驱油模型实验
实验目的:分析对比水驱和降黏剂驱波及系数。
模型参数:用有机玻璃压制一个平面尺寸为25 cm×12.5 cm、厚度为1.6 cm 的长方体三维填砂模型,所充填砂为石英砂,模型渗透率为200 mD。
实验器材包括:三维填砂模型、2PB00C 型平流泵、中间容器(容积为1 L)、精密天平(精确到0.001 g)、回压阀、烧杯(容积为200 mL)、量筒(容积为100 mL)、管线、接头、阀门、透明有机玻璃板、带孔金属管、录像机、不锈钢夹板等。为方便后期观察对比,对实验用油和驱替液采取染色措施,实验用油添加苏丹Ⅲ染色剂,驱替液采用亮蓝染色。
该实验步骤和单管填砂驱油模型实验步骤基本一致,驱替时先采用水驱直至含水率为98%以上,然后再转降黏剂驱直至含水率为98%以上。实验中注入速度为0.3 mL/min。
1.2.3 微观玻璃刻蚀驱油模型实验
实验目的:借助高倍电子放大镜等设备,观察驱替过程中的油水分布状态、运移路径和降黏剂驱替中的乳化现象,并对降黏剂驱提高采收率机理进行微观分析。
实验器材包括:微观玻璃刻蚀驱油模型(渗透率为400 mD)、耐压反应釜、柱塞平流泵(耐压为20 MPa,最大量程为10 mL/min)、中间容器、开关、接头、管线等(图1)。
图1 微观玻璃刻蚀驱油模型实验装置Fig.1 Experimental device of microscopic glass etching model for oil displacement
实验步骤包括:①实验准备。按照实验流程图连接实验装置,柱塞平流泵流速为0.03 mL/min,通过耐压反应釜设置围压为3 MPa。②向装置中饱和水。关闭实验用油和降黏剂中间容器,打开盛有地层水的中间容器,向微观玻璃刻蚀驱油模型中注入地层水,至模型中水相分布均匀且出口端出现连续水滴。③向装置中饱和油。关闭地层水和降黏剂中间容器,打开实验用油中间容器,向微观玻璃刻蚀驱油模型中注入实验用油,至模型中油相分布均匀且出口端出现连续油滴,认为饱和油完全。④水驱。关闭中间容器与六通阀的连接开关,向已饱和油的微观玻璃刻蚀驱油模型中注入蒸馏水,至出口端产出液的含水率达98%或以上,且模型中油相不再移动,结束水驱。⑤降黏剂驱。关闭地层水和实验用油的中间容器,打开盛有降黏剂的中间容器,向模型中注入J10 降黏剂溶液,至出口端无油滴产出,且模型中油滴不再移动,结束实验。
实验条件包括:实验温度为20 ℃,回压为3 MPa,水驱和降黏剂驱注入速度相同,均为0.03 mL/min,实验用油黏度为341 mPa·s,J10 降黏剂溶液质量分数为0.4%。
2 提高采收率机理分析
对于驱替开发的油藏,其采收率实际就是驱油效率和波及系数的乘积[20]。采收率取决于两者的高低,当驱油效率和波及系数增加时,油藏的采收率就得到提高。
2.1 降黏剂驱对驱油效率的影响
2.1.1 驱油效率测定
根据单管填砂驱油模型实验,对比1号岩心和2号岩心实验结果(图2),与水驱相比,降黏剂驱能减缓含水率上升速度,当驱替量为1.25 PV 时,降黏剂驱含水率比水驱低4.2%。同时降黏剂驱能大幅提高驱油效率,在相同的驱替量下(11 PV),降黏剂驱驱油效率比水驱高19%;最终水驱驱油效率为36%,降黏剂驱驱油效率达49%,驱油效率提高13%。
图2 单管填砂驱油模型实验驱油效率及含水率变化曲线Fig.2 Oil displacement efficiency and water cut curve of single-pipe sand-packed model for oil displacement
由实验注入压力变化(图3)可见,由于油水黏度比大,水驱初期含水率即达到80%,随注入水的突破,形成水窜通道,岩心水流阻力不断减小,注入压力一直下降,直至驱替结束。在降黏剂驱的过程中,由于降黏作用使得油水黏度比降低,初期含水率低于40%,随着注入进行,压力下降,当含水率达到80%时,注入降黏剂亦突破,注入压力快速下降,直至含水率达到97%左右,压力会再次上升,关于压力升高的原因会在波及系数部分进行讨论。对比两者不同点:①降黏剂驱存在中含水(含水率低于60%)采油期,而水驱没有;②降黏剂驱初期注入压力明显低于水驱,当含水率为80%时,水驱注入压力为7.3 MPa,降黏剂驱注入压力为4.8 MPa。
图3 单管填砂驱油模型实验注入压力变化曲线Fig.3 Profiles of injection pressure of oil displacement experiment with single-pipe sand-packed model
2.1.2 原因分析
采用微观玻璃刻蚀驱油模型实验,从微观机理上对降黏剂驱提高驱油效率的原因进行分析,其机理主要体现在2个方面。
分散乳化原油 乳化型降黏剂的一个特点就是可以分散乳化原油,形成水包油的小油滴,有利于增强原油的流动性。当大油滴变成小油滴后,更利于原油通过狭窄的喉道[21],同时形成水包油的乳状液后,原油在流动中将油分子之间的内摩擦力变成水分子之间的内摩擦力,原油表观黏度降低。
采用高倍数字摄像机连续拍摄微观模型中某点的原油状态,同时收集采出液(降黏剂驱采出液按时间先后顺序排列),并对其进行分析。水驱结束后某处未被水波及的“死油区”,原油在孔隙和喉道处仍以油块的形式存在(图4a)。注入降黏剂后,受其分散乳化作用影响,原油不再以整块形式存在,变成小油滴,同时,受降黏剂的影响,油水界面张力降低,油滴近似球形存在(图4b)。图5表明,水驱采出液中,原油仍以大油滴形式存在,后期随降黏剂的不断注入,原油不断被分散乳化成更小的油滴。
图4 微观模型中水驱与降黏剂驱原油状态对比Fig.4 Comparison of oil states after water flooding and viscosity reducer flooding in microscopic model
图5 水驱与降黏剂驱采出液中原油状态对比Fig.5 Comparison of oil states in produced liquid after water flooding and viscosity reducer flooding
当形成水包油型(O/W)乳状液后,小油滴外表被水分子包围,形成水膜,并且分散于水相之中,小油滴主要是随驱替液在压差的作用下向前流动,油滴在流动过程中,阻力变成水分子之间的内摩擦力,流动阻力大大减小,原油流动性明显提高。这解释了单管填砂驱油模型实验中降黏剂驱注入压力低于水驱的原因,即注降黏剂驱后,原油流动性提高,多孔介质中渗透阻力减小,注入压力降低(图3)。
增加毛管数 毛管数为被驱替相(油)所受到的粘滞力与毛细管力之比,其数学表达式为:
式中:NC——毛管数;V——驱替速度,m/s;μW——驱替液黏度,mPa·s;σWO——油和驱替液间的界面张力,mN/m。
NC越大,残余油饱和度越小,驱油效率越高。降黏剂为表面活性剂的一种,它可以降低油水界面张力,从而增加毛管数,提高驱油效率。
微观玻璃刻蚀驱油模型实验结果表明,由于降黏剂的注入,油水界面张力降低,从而使得油滴在小的作用力下就可以发生变形,部分比喉道大、在水驱中无法流动的油块,可以变为油丝,穿过喉道,甚至从原来油滴断开、剥离出更小的油滴,大大增强原油的流动性,减少残余油(图6)。
图6 剥离小油滴及变形运移Fig.6 Peeling,deformation and migration of small oil droplets
图6a 为水驱后模型中某处油水分布图,非主流线上孔隙中存在剩余油(图6a 红圈)。由于降黏剂注入后油水界面张力降低,同时受驱替液不停冲刷的影响,原油开始不断变形(图6a),大油滴被拉长形成油丝进入下一喉道(图6b 红圈)。当降黏剂和冲刷作用到一定程度后,油丝被断开,由于体积小,其再次变形通过窄喉道,进入下一孔隙中(图6c)。在原油内部分子力弱的地方,降黏剂可以直接在油丝上剥离出一个小油滴(图6d 蓝圈)。图6e 可以看出,变形的油滴可以不断重复“变形(剥离)—通过窄喉道—进入下一孔隙”这一过程(图6d,6e棕圈)。
2.2 降黏剂驱对波及系数的影响
2.2.1 波及系数的测定
实验前,一般研究认为降黏剂主要作用为降低原油黏度,提高驱油效率,此次研究表明,降黏剂驱还具有提高波及系数的作用。根据三维填砂驱油模型实验,水驱时注入水直接沿着注采之间压力下降最快的方向(注采端连线)推进,波及系数为18.8%(图7a),之后转降黏剂驱,波及面积明显扩大,提高至39.9%,波及系数提升了1 倍以上(图7b)。
图7 水驱和降黏剂驱结束时波及面积Fig.7 Swept area map at end of water flooding and viscosity reducer flooding
2.2.2 原因分析
采用微观刻蚀驱油模型分析降黏剂驱水和油流方向,降黏剂驱提高波及系数主要体现在2 个方面。
乳化调驱 水驱中,由于油水黏度比较大,水沿高渗透条带快速到达采出端,在注入端和采出端之间形成明显的水窜通道,通道两侧未波及区存在明显的剩余油(图8a 绿圈),继续水驱,水直接沿窜流通道快速流过,水驱采收率仅为18.8%。之后采用降黏剂驱,降黏剂分散乳化的原油在流动时首先进入渗透阻力较小的水窜通道,并重新聚集(图8b红圈),通道被乳化的原油占据后,水窜通道中水的渗流面积变窄,水流阻力增加,导致后续注入液进入以前未波及区域,从而形成调驱作用,提高其波及系数。由图8c 可见,后续聚集的油最终被驱替出,同时水驱未波及的绿圈内原油被驱替采出,降黏剂驱采收率最终为43.3%,提高了24.5%。
图8 水驱与降黏剂驱后原油分布Fig.8 Distribution of crude oil after water flooding and viscosity reducer flooding
贾敏效应 当乳化油滴在通过狭窄通道时,可能会发生聚并,在小孔喉处形成贾敏效应,改变驱替液方向。选取图8b 中的一点放大并进行跟踪分析。注降黏剂后,主流线上存在乳化小油滴(图9a蓝圈),之后油滴聚并成大油滴堵在孔喉处(图9b蓝圈),由于贾敏效应,其对水窜通道起封堵作用,周围驱替液转向,图中红圈内未被波及区域的剩余油被驱替走。
图9 降黏剂驱形成贾敏效应Fig.9 Jamin effect of viscosity reducer flooding
正是由于乳化调驱和贾敏效应的作用,图3 中注入压力在驱替后期出现升高的过程,压力的变化从侧面进一步证实了降黏剂驱过程中调驱和封堵作用的存在。
3 结论
降黏剂驱通过提高驱油效率和增加波及系数2个方面提高采收率。
单管驱油效率测试结果表明,相对水驱,降黏剂驱可提高驱油效率13%。通过微观驱油实验分析,其提高驱油效率主要通过2 个途径:①分散乳化,使大油滴变成水包油的小油滴,有利于通过狭窄的喉道,同时降低原油的表观黏度,增强其流动性;②降低界面张力,增加毛管数,降低残余油饱和度。
三维填砂驱油模型实验结果表明,降黏剂驱可以将波及系数由水驱时18.8%提高到39.9%。通过微观驱油实验分析,其水驱时增加波及系数主要通过2 个途径:①乳液调驱分散乳化的原油在流动时首先进入渗流阻力较小的水窜通道,水渗流面积减小、阻力增加,导致后续注入液进入以前未波及区域;②贾敏效应,降黏乳化小油滴聚并成大油滴堵在孔喉处,周围驱替液转向。