冻融循环与沸石掺配对黑土物理性质的影响
2020-04-09马媛媛李鑫媛冀晓东
张 晓,马媛媛,李鑫媛,张 凡,冀晓东
冻融循环与沸石掺配对黑土物理性质的影响
张 晓,马媛媛,李鑫媛,张 凡,冀晓东※
(北京林业大学水土保持学院,北京 100083)
冻融循环作用是东北黑土区发生土壤侵蚀的原因之一,施加土壤改良剂是减弱土壤侵蚀的有效方法。该研究以未经冻融循环作用和未经沸石掺配的黑土作为对照,将天然沸石与黑土按不同比例掺配,探究冻融循环作用和沸石掺配对黑土物理性质的影响,研究表明:1)冻融循环作用增大黑土容重、粘聚力、微孔占比、次大孔占比,减小土壤总孔隙度和内摩擦角,沸石掺配可以降低冻融循环作用对除内摩擦角以外土壤物理性质的影响;2)沸石掺配黑土增大黑土容重、粘聚力、内摩擦角、微孔占比,减小土壤总孔隙度,冻融循环作用对沸石掺配黑土的作用会产生负面影响,但是随着沸石掺配比例增大,冻融循环作用的影响减弱。
土壤;物理性质;冻融循环;土壤改良;沸石
0 引 言
中国东北黑土区是世界四大片黑土区之一,既是中国粮仓[1],也是季节性冻融区[2-4]。近年来,自然因素的影响及人类长期不合理的生产活动使该地区土壤侵蚀加剧,水土流失严重[5],东北黑土区表层土壤流失率高达3~10 mm/a[6],平均厚度已由20世纪50年代的60~80 cm下降至目前的20~30 cm[7],部分地区甚至出现“破皮黄”现象[8]。冻融循环作用是东北黑土区土壤侵蚀的重要影响因素之一,土壤冻融作用是指发生在高寒地区由于温度变化,引起土壤中水分发生相变、体积发生变化,导致土体膨胀或收缩,造成土壤结构破坏和性状改变的过程[9]。冻融过程中土壤不一定全部发生冻融侵蚀,但是会因冻融作用的影响成为其他侵蚀的有效物质来源[10-11]。
冻融循环作用与土壤侵蚀之间的关系及其对土壤物理性质的影响已有大量研究。张科利团队的研究表明,冻融循环作用可以提高细沟黑土土壤的剥离能力、土壤剖面的孔隙率和饱和水力传到率,降低土壤剖面的平均重量质量直径,减小坡面和小流域的产流,增加坡面和小流域年均土壤流失量[12-14]。陈祥伟团队的研究表明冻融循环作用破坏黑土土壤微结构,削弱黑土区黏化层抗蚀性[15-17]。李占斌团队的研究表明冻融作用增大风沙土分离能力,可导致季节性冻融区春季解冻期土壤侵蚀量的增加,而黄土区冻融作用会加剧坡面氮磷的流失风险[18-20]。
在土壤中添加改良材料是一种降低水土流失和减弱土壤侵蚀的有效方法,生物炭、秸秆、粪肥等多种土壤改良材料已广泛应用[21-22]。魏霞等将玉米茎秆汁液施加到西部地区黄土中,增加土壤有机质含量,提高土壤团聚体的平均重量直径,降低了产流产沙速率[23]。Fu等在东北松嫩平原野外黑土中施加生物炭,其作用与冻融循环相结合显著增加了土壤微孔径和总孔隙度,从而提高了土壤保水能力[22]。Zhou等将膨润土-腐殖质酸混合物施加到半干旱区沙质土壤中,促进大团聚体生成,有效改善土壤结构[24]。
天然沸石是一种来源广、价格低、无毒无害的环境友好型材料和土壤改良剂[25]。将天然沸石按照不同比例掺配入黑土中,随沸石掺配量的增加,土壤容重增大,毛管孔隙度和总孔隙度减小,土壤团聚体的团聚度提升,结构稳定性增强,黑土的保水能力和抗侵蚀能力显著提升[26-27]。Behzadfar等研究了模拟降雨条件下不同沸石添加量和添加时间对冻融循环作用影响基本水文要素如产流和土壤流失的作用,结果表明掺配沸石可延长径流开始时间,减少径流量和土壤流失量[28]。天然沸石也是一种天然矿物肥料,农田应用可促进农作物产量的显著增加[29]。
冻融循环作用会影响土壤物理性质,而沸石掺配入土壤中既可以作为土壤肥料增加土壤肥力,也有助于提高土壤的保水和抗侵蚀能力。但目前对于冻融循环与沸石掺配共同作用对土壤物理性质的影响缺乏深入研究。本研究以未经冻融循环作用和未经沸石掺配的黑土作为对照,将天然沸石与黑土按照不同比例掺配,探究冻融循环作用与沸石掺配对黑土容重、总孔隙度、孔隙分布、粘聚力和内摩擦角等土壤物理性质的影响,明确沸石掺配与冻融循环作用之间的关系。研究旨在为后续土壤冻融循环作用的研究奠定基础,也为东北黑土区防治土壤侵蚀和土壤改良提供参考。
1 材料与方法
1.1 研究区概况
研究区位于吉林省的中北部的吉林省榆树市(126°01′44″~127°05′09″E,44°30′57″~45°15′02″N),处于松辽平原的中间地带,属典型黑钙土区。吉林省的黑土区面积为110.1万hm2,海拔约为157~220 m,坡度范围为1°~5°。气候类型为温带亚湿润季风气候。春季干旱多风,夏季湿润多雨,年均降雨量500~700 mm,降雨主要集中在6-9月。秋季温和凉爽,冬季漫长寒冷,冬季土壤冻结深度为1.5~2 m。年平均温度为4 ℃左右,平均无霜期为145 d。
1.2 土壤与天然沸石样品的采集
1.2.1 黑 土
试验用土选用吉林省榆树市耕地典型黑钙土,质地属于砂壤土。取样耕地面积约1 hm2,土壤取样按照“随机”“等量”“多点混合”的原则进行,“S”形布设样点进行采样。在样地内共设置取样点100个,每个样点取样深度15 cm。将各个样点取样的土壤进行混合装袋带回实验室风干,风干过程中,将大土块捏碎,同时去除土壤以外的杂物,之后过5 mm筛备用。在取样过程中,采用烘干法测定得耕地土壤质量含水量为22.5%。
1.2.2 天然沸石
本研究采用的天然沸石粉取自河北省灵寿县某沸石厂,产地为河北省保定市一矿山,矿石纯度达75%以上,以斜发沸石为主。沸石粒度为100目,密度为0.879 g/cm3。
1.3 试验样品的准备
1.3.1 土样筛分
采用定制不锈钢土壤筛干筛风干黑土备用,土壤筛直径30 cm,筛孔直径分别为5、2、1、0.5、0.25 mm,各级粒径团聚体所占比例如表1所示。
表1 黑土各级粒径团聚体占比
1.3.2 土样重塑与沸石掺配
根据表1黑土各级粒径团聚体质量百分比,将土样掺配重塑。土样重塑过程中,各组土样中土壤团聚体粒径比例一致。将沸石与重塑土样按照质量比0、5%、10%、15%和20%的比例分别进行掺配搅拌,保证两者充分混合,用于后续试验。
1.3.3 花盆土壤培养
为模拟野外土壤状况,便于后续环刀法测定土壤容重,将经过沸石掺配后各组土样(每组土样2 kg)置于大花盆中培养,每隔3 d浇水1次,培养期为60 d,培养后待用。同一比例沸石掺配黑土共制备10个花盆土样,用于后期冻融循环。
1.3.4 土柱制备
根据SL237-017-1999《土工试验规程》规定,制备重塑土圆柱形土样,试样制备采用击实法,击实器为三轴剪切仪器配套附件。按试样高度分为5层击实,每层土击实后进行刮毛,然后添加下一层。将制备好的未经冻融的土壤用保鲜膜包裹,胶带封口,目的是减少含水率变化对土样产生影响。同一沸石掺配黑土制备10个土柱,用于后期冻融循环。
1.4 冻融循环试验
将制备好的不同比例沸石掺配黑土花盆培养土壤和土柱放入可调节温度型冰柜进行模拟冻融循环作用实验,本研究控制冻融循环次数为0、1、3、5和7次,同一沸石掺配比例黑土在同一冻融循环次数下进行2次重复。冻结温度设置为−15 ℃,时间为12 h,模拟一次冻结。冻结及融化过程均为封闭环境,无外部水分补给。然后将试件取出,10 ℃室温下融化12 h,模拟一次融化过程。花盆培养土壤和土柱初始土壤含水量均为22.5%,与取样时的土壤含水量一致。
1.5 土壤物理性质的测定
1.5.1 土壤容重与总孔隙度
以经过冻融循环作用的不同比例沸石掺配花盆土壤为研究对象,采用环刀法测定土壤容重,取2次试验结果的平均值。土壤总孔隙度采用经验公式计算得到[30]:
=(93.947−32.995)×100%(1)
式中为土壤容重,g/cm3。
1.5.2 土壤孔隙分布
以经过冻融循环作用的不同比例沸石掺配花盆土壤为研究对象,将土壤切成2 mm´2 mm´10 mm左右的小土条,使用真空冷冻干燥法(SCIENTZ-10N型冷冻干燥机)对试验样品进行真空脱水,真空脱水过程中样品温度为−30 ℃,冷阱温度为−61.5 ℃左右,设置时间为20 h。真空干燥后称量土壤样品,再将样品放入粉末膨胀剂中进行真空密封并再次称质量、记录。将密封好的样品依次安装到压汞仪(Autopore IV 9500型全自动孔径分布压汞仪)的低压站和高压站进行压汞试验。记录每次压力增加时的进汞量,然后根据式(2)计算样品的孔隙半径,得到各实验样品中孔隙直径的大小和分布。试验的具体操作步骤严格按照国家标准GB/T 21650.1-2008《压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分:压汞法》。土壤孔隙分布取2次试验结果的平均值。
压力、材料进汞量和孔隙之间的关系可以采用圆柱型孔隙模型的公式表示为
式中为施加的压力,N;为汞表面的张力,N/m;为汞与所测样品的接触角度,(°);样品的孔隙半径,mm。纯汞的范围是0.410~0.515 N/m,根据相关研究[31-32],本试验取=0.485 N/m,=130°。
1.5.3 土壤粘聚力与内摩擦角
以经过冻融循环作用的不同比例沸石掺配黑土土柱作为研究对象,采用三轴压缩试验(ZS08-D3型全自动三轴压缩仪,北京华勘科技有限责任公司)进行剪切,剪切试验条件为不固结不排水(UU),试样类型为多样剪,剪切速率为0.800%/min,围压分别设置为100、200、300和400 kPa。每组试验重复2次,结果取平均值。
土壤的抗剪强度由土壤粘聚力和内摩擦角表示,用摩尔—库伦公式表达为
τ=+tan(3)
式中τ为土壤抗剪强度,kPa;为土壤粘聚力,kPa;为剪切面法向应力,kPa;为土壤内摩擦角,(°)。
2 结果与分析
2.1 冻融循环作用与沸石掺配对黑土容重的影响
由表2可知,冻融循环作用使得未经沸石掺配黑土的容重增大,且随冻融循环次数增多而不断增大,第7次冻融循环作用后,相对于未经冻融循环作用的黑土,土壤容重最大增幅0.135 g/cm3。同一沸石掺配比例,冻融循环作用同样增大了沸石掺配黑土的容重。同一冻融循环次数下,5%和15%沸石掺配黑土的容重增幅均小于未经沸石掺配黑土的容重增幅,其余比例沸石掺配黑土在冻融循环次数达到7次时,土壤容重的增幅也小于未经沸石掺配黑土的容重增幅。表明沸石掺配黑土可以降低冻融循环增大土壤容重的作用。
沸石掺配黑土增大土壤容重,且随着沸石掺配比例增大,土壤容重不断增大(表2)。
表2 冻融循环作用与沸石掺配对黑土土壤容重的影响
当沸石掺配黑土经过冻融循环作用后,同一冻融循环次数下,不同比例沸石掺配比黑土的容重相对于未经沸石掺配黑土的土壤容重,有的增大,如经过3次冻融循环作用后,所有沸石掺配黑土的容重均大于未经掺配的土壤,而有的减小,如1次、5次和7次冻融循环作用后,5%沸石掺配黑土的土壤容重小于未经沸石掺配黑土的土壤容重,表明冻融循环作用会对沸石增大土壤容重产生影响。当沸石掺配比例达到20%后,各冻融循环次数下的土壤容重均大于该冻融循环次数下未经沸石掺配黑土的容重,表明当沸石掺配比例达到一定程度,冻融循环作用对沸石掺配黑土增大土壤容重的影响变弱甚至消失。
2.2 冻融循环作用与沸石掺配对黑土总孔隙度的影响
由表3可知,冻融循环作用使得未经沸石掺配黑土的土壤总孔隙度减小,且随冻融循环次数增多,土壤总孔隙度不断减小,1次冻融循环后,相对于未经冻融循环作用的黑土,总孔隙度下降2.475个百分点,而7次冻融循环后,总孔隙度下降4.455个百分点。经过沸石掺配后,同一掺配比例下,冻融循环作用同样减小了沸石掺配黑土的土壤总孔隙度。同一冻融循环次数下,5%和15%沸石掺配黑土的土壤总孔隙度减幅均小于未经沸石掺配黑土的土壤总孔隙度减幅,其余比例沸石掺配黑土在冻融循环次数达到7次时,土壤总孔隙度的减幅也小于未经沸石掺配黑土的土壤总孔隙度减幅。表明沸石掺配黑土可以减弱冻融循环作用减小土壤总孔隙度的作用。
根据表3,沸石掺配后黑土总孔隙度减小,且随着沸石掺配比例的不断增大,总孔隙度不断减小。1、5、7次冻融循环作用后沸石掺配黑土的土壤总孔隙度由大于未经沸石掺配黑土的总孔隙度,转变为低于未经沸石掺配的黑土的总孔隙度,这表明冻融循环作用会对沸石掺配降低土壤总孔隙度产生影响,但当沸石掺配达到一定比例如20%时,这种影响基本不存在。
表3 冻融循环作用与沸石掺配对黑土总孔隙度的影响
2.3 冻融循环作用与沸石掺配对黑土孔隙分布的影响
将土壤孔隙按照直径分为微孔(<0.2m)、中孔(0.2~30m)、次大孔(30~100m)和大孔(>100m)[33]。由表4可知,无论是否经过冻融作用或沸石掺配,中孔是黑土最主要孔隙,占比超过70%,微孔次之,最高占比16.41%。
根据表4,冻融循环作用增大未经沸石掺配黑土的微孔、次大孔占比,同时减小中孔、大孔占比和平均孔隙直径。沸石掺配后,随着掺配比例增大,冻融循环作用对微孔、次大孔占比的增大作用减弱,表明冻融循环作用会影响土壤孔隙的分布,但是沸石掺配会减弱这种影响。沸石掺配增大未经冻融循环黑土的微孔占比,减小中孔占比和平均孔隙直径,经过冻融循环作用后,5%沸石掺配黑土的微孔减小,总孔隙直径增大,其余比例沸石掺配黑土的孔隙分布变化情况与掺配黑土未经冻融情况相似,表明沸石掺配可以有效改善土壤孔隙分布,冻融循环作用会对沸石改善土壤孔隙分布产生影响,但是沸石掺配比例增大,这种影响越弱。
表4 冻融循环作用与沸石掺配对黑土孔隙分布的影响
2.4 冻融循环作用与沸石掺配对黑土粘聚力的影响
根据表5,冻融循环作用使得未经沸石掺配黑土的土壤粘聚力增大。随着冻融循环次数的增多,土壤粘聚力逐渐降低并趋于稳定。沸石掺配黑土的土壤粘聚力随着冻融循环次数增多,土壤粘聚力由增大向减小转变。5%沸石掺配黑土在多次冻融循环过程中土壤粘聚力均增大,而10%沸石掺配黑土经过7次冻融循环、15%沸石掺配黑土经过3次冻融循环后以及20%沸石掺配黑土在所有冻融循环次数后,其土壤粘聚力均小于该比例下未经冻融循环的沸石掺配黑土的土壤粘聚力,这表明在黑土中掺配沸石使得冻融循环作用增大土壤粘聚力的作用减弱,或者说冻融循环次数的增多与沸石掺配比例的增大的共同作用降低了土壤的粘聚力。
表5 冻融循环作用与沸石掺配对黑土粘聚力的影响
同样,沸石掺配使得未经冻融循环黑土的土壤粘聚力增大,且随着掺配沸石比例的增大,土壤粘聚力不断增大(表5)。1次冻融循环后,各比例沸石掺配黑土的土壤粘聚力均大于未经沸石掺配黑土的土壤粘聚力,而3次、5次和7次冻融循环作用后,15%沸石掺配黑土的土壤粘聚力小于未经沸石掺配土壤,其余比例沸石掺配黑土的土壤粘聚力均大于未经沸石掺配黑土的土壤粘聚力,表明冻融循环作用会影响沸石掺配增大黑土土壤粘聚力的效果,但是不能完全抵消这种作用。
2.5 冻融循环作用与沸石掺配对黑土内摩擦角的影响
未经沸石掺配的黑土在经过冻融循环作用后土壤内摩擦角减小(表6)。当黑土经过沸石掺配,5%和10%沸石掺配没有改变冻融循环作用影响黑土土壤内摩擦角的效果,黑土的土壤内摩擦角小于该比例下未经冻融循环作用的土壤的内摩擦角,而15%沸石掺配黑土在5次冻融循环作用后以及20%沸石掺配黑土在1次冻融循环作用后,土壤内摩擦角大于该掺配比例下未经冻融循环黑土的内摩擦角,而其余冻融循环次数下均小于该掺配比例下未经冻融循环黑土的内摩擦角。上述结果表明,冻融循环作用会降低土壤内摩擦角,沸石掺配对冻融循环降低土壤内摩擦角的作用基本不产生影响。
表6 冻融循环作用与沸石掺配对黑土内摩擦角的影响
同样,沸石掺配增大未经冻融循环黑土的土壤内摩擦角,但增加不具有规律性。5次冻融循环对沸石掺配增大黑土土壤内摩擦角不产生影响,而7次冻融循环使得沸石掺配增大土壤内摩擦角的效果完全消失。表明冻融循环作用会对沸石掺配增大黑土土壤内摩擦角的作用产生影响,当冻融循环次数足够多时,冻融循环作用使得此效果完全消失。
3 讨 论
土是由固体颗粒、水、气体3部分组成的三相体系,固体颗粒构成土的骨架,水与空气填充于土骨架的孔隙中。冻融循环过程使得土体中的水分随温度的正负波动发生相变,经历由液态水向固态冰或固态冰向液态水的转变[34-35]。冻融循环过程中的水分频繁相变、冰晶生长和水分迁移对土壤颗粒和孔隙的反作用力,破坏土体原有孔隙比,进而改变土壤容重[36-37]。相同含水量条件下,土壤经过冻融循环后初始容重较小的松散土壤会变得紧实,土壤容重增大,而初始容重较大的土壤结构变得疏松,容重减小,中等容重的土壤则变化不明显[38-40]。本研究中初始土壤容重小于1,土壤松散,经过冻融循环后土壤容重增大,与上述变化规律一致。
土壤颗粒在冻融循环过程中发生破碎,颗粒组成与排列分布发生改变,相应地,孔隙分布也随之发生变化[35,41]。郑勋等针对青藏高原粉质黏土的冻融循环试验表明等效直径在1~10m以及10m以上的孔隙含量随冻融循环次数的增加而增大,而0.1~1m的孔隙总体呈减少趋势[35]。陈鑫等以重塑黄土为研究对象的冻融循环试验表明未经冻融作用的黄土孔隙分布曲线呈单峰分布,经历冻融作用的黄土孔隙分布曲线呈双峰甚至多峰分布,冻融作用对0.1~10m范围内的孔隙影响较大[42]。张泽等针对重塑黄土的冻融循环试验表明随冻融循环次数增加,0.01~0.1m超微孔隙数量减少,而5~10m范围内的细微孔隙增加[43]。姜宇等针对冻融循环对黑土团聚体结构特征的影响研究表明黑土团聚体孔径大小分布以>100m孔径的非毛管孔隙为主,孔径小于30m和30~100m的孔隙随冻融循环凑数增加孔隙度有所减少[44]。上述研究说明,冻融循环作用会对土壤的孔隙分布产生显著影响,但是不同土壤的变化情况不同,相关研究对土壤孔隙分布的划分标准也有所区别。
冻融循环作用通过改变土的结构性从而改变土的力学性质。方丽莉等研究了冻融循环对青藏粉质黏土的力学结构性能,研究发现冻融循环作用增大了土壤的粘聚力和内摩擦角,且随冻融循环次数的增加而增加[45]。而倪万魁、叶万军等针对黄土的冻融循环作用研究表明冻融循环作用降低了土壤的粘聚力[46-47]。Zhang等研究了冻融循环作用对盐渍土抗剪强度的影响,结果表明随冻融循环次数增加,粘聚力增加,但内摩擦角减小[48]。上述研究表明不同土壤在冻融循环作用过程中土壤粘聚力和内摩擦角的变化不同,本研究中,冻融循环作用增大了土壤粘聚力,减小了土壤内摩擦角,但随冻融循环次数增多,土壤粘聚力不断降低,张惠忍等针对青藏高原草甸砂壤土和北京粉壤土的冻融循环实验研究表明[49],冻融状态下这两种测试土的内摩擦角显著小于未冻土,而粘聚力整体上则大于未冻土,与本研究结果基本一致。本研究结果可能是由于冻融作用对黑土土壤颗粒联结作用既有强化又有破坏,随着冻融冻融循环次数增多,强化作用存在但是发挥作用减弱,土壤颗粒之间原有胶结逐渐减弱,土壤粘聚力降低。影响内影响内摩擦角的主要因素是土颗粒之间的接触面积和土颗粒形状[50],土壤内摩擦角减小可能是黑土经过冻融循环后土壤颗粒形状发生改变所影响。
天然沸石具有较大的比表面积和较强的静电场,具备良好的吸附性能和胶结作用,可以作为微小的质点吸附在其他团聚体的表面,同时将更多的胶体团聚体吸附到沸石的周围,促进团聚体的形成,提升团聚体的稳定性和土壤颗粒之间的胶结力[51-52],同时,天然沸石可以填充土壤颗粒与颗粒之间的大孔隙,并附着在大粒径团聚体表面,增加土壤内部的小孔隙所占比例和总孔隙面积,改变土壤的颗粒间和团粒内部的孔隙分布,土壤颗粒之间接触点增多,增加土壤团聚体表面的粗糙程度,改变土壤结构性能[53],使得使土壤容重增大,并增大土壤内摩擦角和粘聚力,减小土壤总孔隙度。
本研究中,沸石掺配黑土经历冻融循环作用过程时,沸石与黑土土壤颗粒共同发挥作用,沸石掺配有效减弱冻融循环作用对土壤物理性质的影响,而冻融循环作用对沸石掺配改善土壤质量的作用会产生影响,但是与沸石掺配比例密切相关。Angin等将硅藻土作为土壤改良剂掺入土壤中,探究冻融循环作用对土壤物理性质的影响,结果表明硅藻土的使用有效降低了冻融循环作用对土壤物理性质的影响,随着改良剂使用比例的增大,其发挥作用的有效性增加[54],与本研究结果类似,说明采用沸石掺配黑土以抵抗冻融循环作用具有有效性和可行性。
本研究属于室内模拟试验,最大冻融循环此时为7次,且初始土壤含水量均一致,在野外实际过程中,冻融循环次数往往在数十次到上百次,冻融循环频繁,天气变化等因素对土壤含水量的影响复杂,土壤含水量在一天之内可能会经历多次变化[55-56],本试验模拟结果与实际野外冻融循环影响还具有差距,需要在后期模拟和野外试验过程中,增加冻融循环次数,合理调配沸石掺配比例和试验指标设定,使得模拟与野外实际情况接近。
4 结 论
1)冻融循环作用增大黑土容重、粘聚力、微孔占比、次大孔占比,减小土壤总孔隙度和内摩擦角,沸石掺配可以降冻融循环作用对除内摩擦角以外土壤物理指标的影响;
2)沸石掺配黑土增大土壤容重、粘聚力、内摩擦角、微孔占比,减小土壤总孔隙度,冻融循环作用对沸石掺配黑土的作用会产生负面影响,但是随着沸石掺配比例增大,冻融循环作用的影响减弱。
[1]韩晓增,李娜. 中国东北黑土地研究进展与展望[J]. 地理科学,2018,38(7):1032-1041.
Han Xiaozeng, Li Na. Research progress of black soil in northeast China[J]. Scientia Geographica Sinica, 2018, 38(7): 1032-1041. (in Chinese with English abstract)
[2]黄擎,刘博睿,蔡华杰,等. 冻融交替对不同施肥水平的黑土中氮磷元素含量的影响[J]. 农业工程学报,2015,31(增刊1):188-195.
Huang Qing, Liu Borui, Cai Huajie, et al. Effect of freeze-thawing cycles on nitrogen and phosphor concentrations in black soil under different fertilization modes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 188-195. (in Chinese with English abstract)
[3]Liu Tiejun, Xu Xiangtian, Yang Jie. Experimental study on the effect of freezing-thawing cycles on wind erosion of black soil in Northeast China[J]. Cold Regions Science and Technology, 2017, 136: 1-8.
[4]孙宝洋,李占斌,肖俊波,等. 冻融作用对土壤理化性质及风水蚀影响研究进展[J]. 应用生态学报,2019,30(1):337-347.
Sun Baoyang, Li Zhanbin, Xiao Junbo, et al. Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 337-347. (in Chinese with English abstract)
[5]Xu X Z, Xu Y, Chen S C, et al. Soil loss and conservation in the black soil region of northeast China: A retrospective study[J]. Environmental Science and Policy, 2010, 13(8): 793-800.
[6]Liu X B, Zhang X Y, Wang Y X, et al. Soil degradation: A problem threatening the sustainable development of agriculture in northeast China[J]. Plant Soil and Environment, 2010, 56(2): 87-97.
[7]王磊,何超,郑粉莉,等. 黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验[J]. 农业工程学报,2018,34(15):141-148.
Wang Lei, He Chao, Zheng Fenli, et al. Soil-bin experiment on effects of contour ridge tillage for controlling hill slope soil erosion in black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 141-148. (in Chinese with English abstract)
[8]闫业超,张树文,岳书平. 近40a黑土典型区坡沟侵蚀动态变化[J]. 农业工程学报,2010,26(2):109-115.
Yan Yechao, Zhang Shuwen, Yue Shuping. Dynamic change of hill slope and gully erosion in typical area of black soil region during the past 40 years[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 109-115. (in Chinese with English abstract)
[9]张科利,刘宏远. 东北黑土区冻融侵蚀研究进展与展望[J]. 中国水土保持科学,2018,16(1):17-24.
Zhang Keli, Liu Hongyuan. Research progresses and prospects on freeze-thaw erosion in the black soil region of northeast China[J]. Science of Soil and Water Conservation, 2018, 16(1): 17-24. (in Chinese with English abstract)
[10]张瑞芳,王瑄,范昊明,等. 我国冻融区划分与分区侵蚀特征研究[J]. 中国水土保持科学,2009,7(2):24-28.
Zhang Ruifang, Wang Xuan, Fan Haoming, et al. Study on the regionalization of freeze-thaw zones in China and the erosion characteristics[J]. Science of Soil and Water Conservation, 2009, 7(2): 24-28. (in Chinese with English abstract)
[11]魏霞,李勋贵,Huang Chihua. 交替冻融对坡面产流产沙的影响[J]. 农业工程学报,2015,31(13):157-163.
Wei Xia, Li Xungui, Huang Chihua. Impacts of freeze-thaw cycles on runoff and sediment yield of slope land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 157-163. (in Chinese with English abstract)
[12]Liu Hongyuan, Yang Yang, Zhang Keli, et al. Soil erosion as affected by freeze-thaw regime and initial soil moisture content[J]. Soil Science Society of America Journal, 2017, 81(3): 459.
[13]刘笑妍,张卓栋,张科利,等. 不同尺度下冻融作用对东北黑土区产流产沙的影响[J]. 水土保持学报,2017,31(5):45-50.
Liu Xiaoyan, Zhang Zhuodong, Zhang Keli, et al. Effect of freezing and thawing on runoff and sediment yield in the black soil region of northeast China at different scales[J]. Journal of Soil and Water Conservation, 2017, 31(5): 45-50. (in Chinese with English abstract)
[14]Ma Qianhong, Zhang Keli, Jabro J D, et al. Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China[J]. Environmental Earth Sciences, 2019, 78(10): 321.
[15]王恩姮,卢倩倩,陈祥伟. 模拟冻融循环对黑土剖面大孔隙特征的影响[J]. 土壤学报,2014,51(3):490-496.
Wang Enheng, Lu Qianqian, Chen Xiangwei. Characterization of macro-pores in mollisol profile subjected to simulated freezing-thawing alterantion[J]. Acta Pedologica Sinica, 2014, 51(3): 490-496. (in Chinese with English abstract)
[16]王恩姮,赵雨森,夏祥友,等. 冻融交替后不同尺度黑土结构变化特征[J]. 生态学报,2014,34(21):6287-6296.
Wang Enheng, Zhao Yusen, Xia Xiangyou, et al. Effects of freeze-thaw cycles on black soil structure at different size scales[J]. Acta Ecologica Sinica, 2014, 34(21): 6287-6296. (in Chinese with English abstract)
[17]夏祥友,王恩姮,杨小燕,等. 模拟冻融循环对黑土黏化层孔隙结构的影响[J]. 北京林业大学学报,2015,37(6):70-76.
Xia Xiangyou, Wang Enheng, Yang Xiaoyan, et al. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journbal of Beijing Forestry University, 2015, 37(6): 70-76. (in Chinese with English abstract)
[18]肖俊波,孙宝洋,李占斌,等. 冻融循环对风沙土物理性质及抗冲性的影响试验[J]. 水土保持学报,2017,31(2):67-71.
Xiao Junbo, Sun Baoyang, Li Zhanbin, et al. Effects of freeze-thaw cycles on aeolian sand soil physical properties and soil anti-scouribility[J]. Journal of Soil and Water Conservation, 2017, 31(2): 67-71. (in Chinese with English abstract)
[19]成玉婷,李鹏,徐国策,等. 冻融条件下土壤可蚀性对坡面氮磷流失的影响[J]. 农业工程学报,2017,33(24):141-149.
Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss undercondition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract)
[20]肖俊波,孙宝洋,马建业,等. 季节性冻融对东柳沟流域风沙土分离能力的影响[J]. 中国水土保持科学,2017,15(6):1-8.
Xiao Junbo, Sun Baoyang, Ma Jianye, et al. Effect of seasonal freeze-thaw on the detachment capacity of Aeolian sandy soil in Dongliugou watershed[J]. Science of Soil and Water Conservation, 2017, 15(6): 1-8. (in Chinese with English abstract)
[21]杨永辉,武继承,毛永萍,等. 利用计算机断层扫描技术研究土壤改良措施下土壤孔隙[J]. 农业工程学报,2013,29(23):99-108.
Yang Yonghui, Wu Jicheng, Mao Yongping, et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 99-108. (in Chinese with English abstract)
[22]Fu Qiang, Zhao Hang, Li Tianxiao, et al. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing[J]. Catena, 2019, 176: 112-124.
[23]魏霞,苏辉东,李勋贵,等. 玉米茎秆汁液对土壤的减水减沙效益及其机理[J]. 农业工程学报,2015,31(21):142-147.
Wei Xia, Su Huidong, Li Xungui, et al. Runoff and sediment reduction benefits of soil and water conservation and its mechanism of corn stalk juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 142-147. (in Chinese with English abstract)
[24]Zhou Lei, Monreal C M, Xu Shengtao, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region[J]. Geoderma, 2019, 338: 269-280.
[25]张莉,赵保卫,李瑞瑞. 沸石改良土壤的研究进展[J]. 环境科学与管理,2012,37(1):39-43.
Zhang Li, Zhao Baowei, Li Ruirui. Research progress of soil amelioration with zeolite[J]. Environmental Science and Management, 2012, 37(1): 39-43. (in Chinese with English abstract)
[26]马媛媛,戴显庆,彭绍好,等. 天然沸石对松嫩平原黑钙土理化性质和保水能力的影响[J]. 北京林业大学学报,2018,40(2):51-57.
Ma Yuanyuan, Dai Xianqing, Peng Shaohao, et al. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. (in Chinese with English abstract)
[27]戴显庆,冀晓东,杨茂林,等. 天然沸石对黑土团聚体含量及稳定性的影响[J]. 中国水土保持,2016(5):38-41,77.
Dai Xianqing, Ji Xiaodong, Yang Maolin, et al. Influence of natural zeolite to aggregate content and stability of black soil[J]. Soil and Water Conservation in China, 2016(5): 38-41, 77. (in Chinese with English abstract)
[28]Behzadfar M, Sadeghi S H, Khanjani M J, et al. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle[J]. International Soil and Water Conservation Research, 2017, 5(2): 95-101.
[29]Eprikashvili L, Zautashvili M, Kordzakhia T, et al. Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils[J]. Annals of Agrarian Science, 2016, 14(2): 67-71.
[30]中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法[M]. 北京:科学出版社,1978.
[31]Delage P, Lefebvre G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.
[32]闫小庆,房营光,张平. 膨润土对土体微观孔隙结构特征影响的试验研究[J]. 岩土工程学报,2011,33(8):1303-1305.
Yan Xiaoqing, Fang Yingguang, Zhang Ping. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Geotechnical Engineering, 2011, 33(8): 1303-1305. (in Chinese with English abstract)
[33]陈学文,张晓平,梁爱珍,等. 耕作方式对黑土耕层孔隙分布和水分特征的影响[J]. 干旱区资源与环境,2012,26(6):114-120.
Chen Xuewen, Zhang Xiaoping, Liang Aizhen, et al. Tillage effects on soil pore size distribution and soil moisture in Northeast China[J]. Journal of Arid Land Resources and Environment, 2012, 26(6): 114-120. (in Chinese with English abstract)
[34]郑郧,马巍,邴慧. 冻融循环对土结构性影响的机理与定量研究方法[J]. 冰川冻土,2015,37(1):132-137.
Zheng Yun, Ma Wei, Bing Hui. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 132-137. (in Chinese with English abstract)
[35]郑郧,马巍,邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学,2015,36(5):1282-1287,1294.
Zheng Yun, Ma Wei, Bing Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese with English abstract)
[36]Konrad J M. Physical processes during freeze-thaw cycles in clayey silts[J]. Cold Regions Science and Technology, 1989, 16(3): 291-303.
[37]Dagesse D F. Freezing-induced bulk soil volume changes[J]. Canadian Journal of Soil Science, 2010, 90(3): 389-401.
[38]杨成松,何平,程国栋,等. 冻融作用对土体干容重和含水量影响的试验研究[J]. 岩石力学与工程学报,2003,(S2):2695-2699.
Yang Chengsong, He Ping, Cheng Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, (S2): 2695-2699. (in Chinese with English abstract)
[39]Sahin U, Angin I, Kiziloglu F M. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash[J]. Soil & Tillage Research, 2008, 99(2): 254-260.
[40]温美丽,刘宝元,魏欣,等. 冻融作用对东北黑土容重的影响[J]. 土壤通报,2009,40(3):492-495.
Wen Meili, Liu Baoyuan, Wei Xin, et al. Impact of freezing and thawing on bulk density of black soil[J]. Chinese Journal of Soil Science, 2009, 40(3): 492-495. (in Chinese with English abstract)
[41]Zhang Ze, Ma Wei, Feng Wenjie, et al. Reconstruction of soil particle composition during freeze-thaw cycling: A Review[J]. Pedosphere, 2016, 26(2): 167-179.
[42]陈鑫,张泽,李东庆. 基于不同分形模型的冻融黄土孔隙特征研究[J]. 冰川冻土,2019,41(2):1-11.
Chen Xin, Zhang Ze, Li Dongqing. Study on the pore features of freezing-thawing loess based on different fractal models[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 1-11. (in Chinese with English abstract)
[43]张泽,周泓,秦琦,等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报:地球科学版,2017,47(3):839-847.
Zhang Ze, Zhou Hong, Qin Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycles[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3): 839-847. (in Chinese with English abstract)
[44]姜宇,范昊明,侯云晴,等. 基于同步辐射显微CT研究冻融循环对黑土团聚体结构特征的影响[J]. 生态学报,2019,39(11):4080-4087.
Jiang Yu, Fan Haoming, Hou Yunqing, et al. Characterization of aggregate microstructure of black soil with different number of freeze-thaw cycles by synchrotron-based micro-computed tomography[J]. Acta Ecologica Sinica, 2019, 39(11): 4080-4087. (in Chinese with English abstract)
[45]方丽莉,齐吉琳,马巍. 冻融作用对土结构性的影响及其导致的强度变化[J]. 冰川冻土,2012,34(2):435-440.
Fang Lili, Qi Jilin, Ma Wei. Freeze-thaw induced changes in soil structure and its relationship with variations in strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440. (in Chinese with English abstract)
[46]倪万魁,师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土,2014,36(4):922-927.
Ni Wankui, Shi Huaqiang. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927. (in Chinese with English abstract)
[47]叶万军,刘宽,杨更社,等. 冻融循环作用下黄土抗剪强度劣化试验研究[J]. 科学技术与工程,2018,18(3):313-318.
Ye Wanjun, Liu Kuan, Yang Gengshe, et al. Experimental study on shear strength deterioration of loess under freeze-thaw cycling[J]. Science Technology and Engineering, 2018, 18(3): 313-318. (in Chinese with English abstract)
[48]Zhang Yu, Yang Zhaohui, Liu Jiankun, et al. Impact of cooling on shear strength of high salinity soils[J]. Cold Regions Science and Technology, 2017, 141: 122-130.
[49]张惠忍,李法虎,吕威. 冻融状态和初始含水率对土壤力学性能的影响[J]. 农业工程学报,2017,33(3):128-133.
Zhang Huiren, Li Fahu, LǚWei. Effects of freeze-thaw status and initial water content on soil mechanical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 128-133. (in Chinese with English abstract)
[50]董晓宏,张爱军,连江波,等. 长期冻融循环引起黄土强度劣化的试验研究[J]. 工程地质学报,2010,18(6):887-893.
Dong Xiaohong, Zhang Aijun, Lian Jiangbo, et al. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology, 2010, 18(6): 887-893. (in Chinese with English abstract)
[51]霍习良,周恩湘,姜淳,等. 沸石改良土壤结构性状的研究[J] . 河北农业大学学报,1991(2):20-24.
Huo Xiliang, Zhou Enxiang, Jiang Chun, et al. A research of zeolite improving the structural property of soils[J]. Journal of Hebei Agricultural University, 1991(2): 20-24. (in Chinese with English abstract)
[52]闫丰. 环境矿物材料改良土壤的研究进展[J]. 安徽农业科学,2015,43(21):95-96,126.
Yan Feng. Research progress of soil amelioration with environmental mineral materials[J]. Journal of Anhui Agriculture Science, 2015, 43(21): 95-96, 126. (in Chinese with English abstract)
[53]余振宝. 沸石加工与应用(第二版)[M]. 北京:化学工业出版社,2013.
[54]Angin I, Sari S, Aksakal E L. Effects of diatomite(DE) application on physical properties of soils subjected to freeze-thaw cycles[J]. Soil & Tillage Research, 2016, 160: 34-41.
[55]刘铁军. 黑土地冻融作用与土壤风蚀研究[M]. 北京:中国水利水电出版社,2013.
[56]牛崇桓. 水土保持情况普查报告[M]. 北京:中国水利水电出版社,2017.
Effects of freeze-thaw cycles and zeolite blending on black soil physical properties
Zhang Xiao, Ma Yuanyuan, Li Xinyuan, Zhang Fan, Ji Xiaodong※
(,100083,)
The freeze-thaw cycle is one of the causes of soil erosion in the black soil region of Northeast China. The application of soil conditioner is an effective way to reduce soil erosion. Natural zeolite is an environmentally friendly material and soil conditioner with a wide range of sources, low prices, non-toxic or harm. In this study, the black soil of the Songliao Plain of Northeast China was taken as the research object. Random sampling was carried out at multiple sites in the experimental farmland. Soil moisture content was determined by drying method. The samples of black soil were dried after debris removal. According to the percentage of aggregates of different grain sizes, the soil was reconstructed after sieving. The natural zeolite and the black soil were thoroughly stirred and mixed according to the mass ratio of 0, 5%, 10%, 15%, 20%, then the mixed soil samples were used for pot experiment and soil column. The potted soil and soil column were placed in a temperature-adjustable freezer to simulate the freeze-thaw cycle. The initial soil water content of potted soil and soil column was 22.5%, which was consistent with the soil water content of cultivated land when soil was sampled. In this study, freeze-thaw cycles were controlled for 0, 1, 3, 5 and 7 times, and the same proportion of zeolite mixed with black soil was repeated twice under the same freeze-thaw cycles. The effects of freeze-thaw cycles and zeolite blending on black soil physical indices were studied by comparing the black soil without freeze-thaw cycles or without zeolite blending. Soil physical indexes include soil bulk density, soil total porosity, soil pore distribution, and soil cohesion force and soil internal friction angle. Soil bulk density was measured by ring knife method, soil total porosity was calculated by empirical formula, and soil pore distribution was measured by vacuum freeze-drying and mercury intrusion meter method. Soil cohesion force and soil internal friction angle were determined by triaxial shear test. All indicators were averaged by two repetitions. The research shows that: 1) For the black soil without zeolite addition, freeze-thaw cycles increase soil bulk density, soil cohesion force, micropore and sub-macropore, decrease soil total porosity, soil internal friction angle, mesopore, macropore and average pore diameter. Zeolite blending can reduce the effect of freeze-thaw cycles on soil physical indexes except soil internal friction angle. The larger proportion of zeolite, the more obvious effect of reducing the effect of freeze-thaw cycles. 2) For the black soil that has not experienced freeze-thaw cycles, soil bulk density, soil cohesion force, soil internal friction angle, soil micropores increase, soil total porosity, mesopores and average the pore diameter decreases after zeolite blending. The effect of freeze-thaw cycles on the effect of zeolite-modified black soil will have a negative impact. However, as the zeolite blending ratio increases, the effect of freeze-thaw cycles weakens. This study can lay a foundation for the follow-up study of soil freeze-thaw cycle, and also provide a reference for soil improvement in the black soil region of Northeast China.
soils; physical properties; freeze-thaw cycle; soil improvement; zeolite
张 晓,马媛媛,李鑫媛,张 凡,冀晓东. 冻融循环与沸石掺配对黑土物理性质的影响[J]. 农业工程学报,2020,36(3):144-151.doi:10.11975/j.issn.1002-6819.2020.03.018 http://www.tcsae.org
Zhang Xiao, Ma Yuanyuan, Li Xinyuan, Zhang Fan, Ji Xiaodong. Effects of freeze-thaw cycles and zeolite blending on black soil physical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 144-151. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.018 http://www.tcsae.org
2019-08-09
2019-09-09
国家水体污染控制与治理科技重大专项子课题二“山地灌草丛荒溪生态重建与坡面蓄流技术”(2017ZX07101002-002);北京林业大学青年教师科学研究中长期项目“土壤侵蚀过程与机理”(2015ZCQ-SB-01);北京林业大学科技创新计划-交叉创新科学研究试点专项“水土流失面源污染及其防控机理”(2016JX04)
张 晓,博士研究生。主要研究方向:生态恢复与土壤修复。Email:zhangxiao3e@bjfu.edu.cn
冀晓东,博士,教授。主要研究方向:生态恢复与土壤修复。Email:jixiaodong@bjfu.edu.cn
10.11975/j.issn.1002-6819.2020.03.018
S156
A
1002-6819(2020)-03-0144-08