APP下载

旋流式鱼道的构建与水力特性分析

2020-04-09郄志红吴鑫淼冉彦立

农业工程学报 2020年3期
关键词:横断面旋流导流

郄志红,刘 辉,吴鑫淼,冉彦立

旋流式鱼道的构建与水力特性分析

郄志红,刘 辉,吴鑫淼,冉彦立

(河北农业大学城乡建设学院,保定 071001)

为增强过鱼设施的蜿蜒性和自然性,该文提出了一种采用曲线型边壁和导流坎的旋流式鱼道结构。首先通过模型试验得到了鱼道在不同工况下鱼道内两侧边壁水流的沿壁沿程水深以及水流流态,观察了过鱼效果,验证了数值计算的准确性,通过数值计算进一步分析了旋流式鱼道的表面流速、近底流速及关键横断面流速分布。结果表明:鱼道内形成的旋流蜿蜒曲折,流态丰富。过鱼通道内主流区流速均不大于0.84 m/s,满足过鱼要求,过鱼对象可以在该鱼道内顺利上溯,主流两侧的缓流或回流区可为鱼类休息之用,说明了鱼道体型的合理性。该文提出的鱼道丰富了鱼道的形式,对今后类似鱼道的设计和建设具有一定的指导意义。

数值分析;流态;流速;旋流式;鱼道

0 引 言

鱼道是一种保护生物多样性、保障鱼类顺利上溯下游的专用设施[1-5]。传统鱼道结构一般有竖缝式、丹尼尔式、池堰式、涵洞式、组合式等形式[6-7],其体型构造和尺寸常常通过模型试验或数值模拟确定。例如,Rajaratnam等[8-11]通过室内模型试验及野外观测,研究了竖缝式鱼道的水流流态以及池室的底坡坡度、长宽比与水流流态的关系等问题。徐体兵等[12-14]各自对竖缝式鱼道的结构进行了优化设计。佟雪丰等[15]研究了丹尼尔式鱼道水流的紊动特性。Yagci等[16-17]分别对池堰式鱼道水力特性进行了试验和理论研究。Magura[18]对环形波纹钢管涵洞式鱼道进行了模型试验研究。黄明海[19]对竖缝和潜孔组合式鱼道进行了研究。从传统鱼道的实际运行看,国内外虽然不乏成功的鱼道工程,也有不少鱼道建成后过鱼效果不佳。如洋塘鱼道自1987年至今,一直处于停运、废弃状态[20]。因此,不少学者提出了一些近自然型的鱼道。如日本学者根据溪流构造建设的近自然迂回水路鱼道和早濑状固床缓斜面鱼道等[21]。孙双科等[22]阐述了近自然鱼道的设计方法和理念等。李广宁等[23]引入水生植物元素,提出一种仿自然鱼道并进行了过鱼试验。郄志红等[24]将中国古代哲学思想与工程学相结合,提出了一种基于“道法自然”理念的的太极式鱼道,通过池室中的太极圆盘和侧壁上的八卦爻条削弱水流动能,形成多态水流以提高多种鱼类洄游的适应性。

综上,目前人们对鱼道的研究尚不充分,故《水利水电工程鱼道设计导则》[25]中建议鱼道设计宜进行水工模型试验。近自然型鱼道更是需要不断优化和革新。太极式鱼道的太极圆盘直接采用太极图中的阴阳鱼形,起到了良好的消能作用,但对池室内水流的阴阳变化作用未能充分显现。本文提出一种改进型式旋流式鱼道,通过物理模型试验和数值模拟分析其水力特性,以期优化结构并充分体现太极效果,提高过鱼能力。

1 旋流式鱼道结构组成与原理

旋流式鱼道的水池边壁呈弧线状,水池之间由反向弧面平滑连接,与蜿蜒形河道相似。鱼道断面的束窄和扩张使水流从急流到缓流的变化过程中通过水跃消能,降低流速。顺水流方向倾斜设置的导流坎引导水流,借助弧形边壁形成旋流。池室内流速场互相摩擦、碰撞进行二次消能,从而增强消能效果,增加水深。与太极式鱼道相比,省去了太极鱼道中太极圆盘,节约投资的同时,池室内水流呈现急缓、深浅的明显分区特征,可使阴阳效果凸显,丰富水流流态。其弯曲的逆流区可引导鱼类上溯洄游,低流速区可为鱼类提供休息场所,可提高过鱼能力。

旋流式鱼道组成主要包括鱼道进口、鱼道出口、休息室、池室。池室是鱼道的基本结构单元。旋流式鱼道结构的概念图和平面布置如图1所示。

图1 旋流式鱼道结构和平面布置简图

2 研究方法

通过数值模拟计算与物理模型试验结合的方式,探究旋流式鱼道在典型工况中的水力学特性。通过物理模型试验测量沿曲线型池壁的水深变化与水流流态;通过CFD数值模拟获取完整流态分布和鱼道内不同断面的流速场。通过物理模型试验得出的流态和部分水深数据验证数值模型和参数选取的正确性。

2.1 物理模型设计与试验

2.1.1 物理模型的设计

物理模型依据鱼道设计导则[25]和水力设计基本要点[26]制作,根据重力相似准则确定模型具体尺寸。尺寸如下:单支鱼道内宽20 cm,外宽22 cm。单个池室(即相邻垭口间距)长28 cm,宽20 cm,深15 cm。垭口宽为4 cm,坡度为10%,鱼道底板厚2 cm,弧形边壁厚1 cm。上下游水位差16.14 cm。蓄水池内安装2台潜水泵为鱼道系统供水,上层布置泄水孔调节上游水位。试验装置见图2。

图2 试验装置

2.1.2 试验方案

模型制作完成后进行过水试验,用水位测针量取测点的水深。测量的起点坐标设置在距休息室0.15 m断面位置处。因为鱼道结构的非对称性,测点选在鱼道两侧边壁,具体测点详见图3a。首先,进行无导流坎时(以下称初始工况)的过水试验,从测点1开始依次测量两侧池壁各点水深;其次,在模型内安装不同尺寸的导流坎,导流坎安装在垭口处,偏转角度为33°,导流坎具体尺寸:长4 cm,宽0.3 cm,高度为变量。分别进行导流坎高度=2 cm(简称工况1)和高度=3 cm(简称工况2)时的过水试验,从测点1开始依次测量鱼道内两侧边壁各点水深。为节省篇幅,图3b以3个池室展示3种不同工况,而试验时3个池室为同种工况。

图3 测点位置与典型工况示意

2.2 数学模拟计算

2.2.1 数学模型

根据物理模型(初始工况、工况1、工况2),建立旋流式鱼道数学模型,使用计算流体力学软件对流场进行数值模拟。计算模型选择标准湍流模型,选择VOF方法模拟自由液面。使用FlowSight对计算结果进行处理,得到水力特性图。

2.2.2 控制方程

采用RNG-紊流方程,控制方程包括连续方程(1)、Navier-Stokes()方程(2)、湍动能方程(3)与湍动能耗散率方程(4)[27-29]:

2.2.3 边界条件

取鱼道上下游方向为轴方向,水池横向为轴,鱼道进口断面(=0)处为坐标原点。为使上游来流平稳,在=0~0.10 m之间为平底坡。进口断面初始水位18.14 cm,底板高程15.14 cm。鱼道的进水口、出水口均设为压力边界条件,顶部边界设定为压力边界,相对压强为0,其他设定成固壁边界。

2.2.4 网格划分设置

利用自动划分网格功能(auto mesh)处理网格,模型整体划分范围:方向0~143 cm,方向0~22 cm,方向0~30 cm,以0.22 cm×0.22 cm×0.22 cm网格单元划分。

3 结果与分析

3.1 物理试验结果

3.1.1 过水试验结果

过水试验测定2个指标:水流流态、水深变化。潜水泵进行循环供水,调整上游设置的泄水孔使进水口水位保持稳定。过水试验图片见图4。

图4 过水试验

初始工况中,垭口束窄使过流水位涌高形成急流,池室扩张使水流从急流过度至缓流,局部水面突然跃起,形成水跃,池室内水位由浅及深。水跃上部回旋翻滚,参入大量气泡,旋滚之下是扩散的主流。表层翻滚区域和底层主流区水体质点相互掺杂,消除能量,所以水流整体起伏波动剧烈。工况1、2中仍有水跃现象,但导流坎使水跃转移至池室一侧,将水流紊动剧烈变化控制在池室右侧及边壁,产生较大的能量损失,而左侧水流紊动相对较小。水流在池室内形成旋流,回流至低流速区的水体借助弧形池壁转向,一部分与主流相悖,降低流速;另一部分融入主流,流向下级池室。

比较3个工况的两侧沿壁沿程水深(图5),曲线趋势整体保持一致。最大水深均分布在池室后半部分及近垭口的池壁处,初始工况最大水深相对较低。最浅水深由无导流坎时的1 cm增至加入导流坎后的2.4 cm。加坎后,上层水流虽然仍可以漫过导流坎进入池室,但池室左侧最浅水深比右侧高0.5 cm左右,水深增长更平缓。

图5 3种工况中的测量水深

3.1.2 过鱼试验结果

试验鱼为草鱼幼鱼,草鱼为半洄游性鱼类。研究表明[30],在(28±1)℃水温下,体长在5.0~15.0 cm之间的草鱼幼鱼临界游泳速度范围是0.68~1.0 m/s。阐述3种工况的试验情况。

在进行初始工况时,将试验鱼置于池室3中,适应10 min,撤去拦鱼栅观察。试验鱼沿流速较大一侧靠壁向上游动,自池室3游至池室1后被主流冲回池室3中。说明鱼道中流速过大,需进一步减小水流流速。

在工况1与工况2中(加入导流坎后),试验鱼基本会靠池壁向上游动,能够通过垭口游至上游休息室内。通过池室期间,部分试验鱼在池室左侧进行了休息调整。试验说明,导流坎将池室流态和流速进行了有效的分区,减速效果明显,降低了鱼类上溯的难度。

3.2 数学模型验证

为验证数值模拟的准确性,将物理模型试验结果与数值计算进行验证,对比鱼道左右壁沿程水深。3种工况下沿曲线型边壁的水深变化测量值与模拟水深值如图6所示。初始工况中的水流为对称结构,故左右壁水深变化基本相同。模拟的计算值和测量值表现出相似的变化趋势。所有工况下,测量值和计算值的相对误差最大值约14.2%,比允许误差值15%低[31]。

图6 典型工况水深模拟与实测值对比

3.3 流速分布规律

3.3.1表面流速分布

图7a和图7b分别给出了工况1和工况2的自由表面流速分布情况。2种工况中均有明显的流速分区现象,水流多态。主流从垭口流出后,被导流坎导向池室右侧,然后沿弧形池壁流向下级池室。池壁改变了部分水流方向,一部分水流由于池壁作用和水流的切应力形成旋流,沿弧线轨迹流向池室左侧区域;另一部分形成与主流方向相反的反向流速,利于降低流速。工况1、2的主流区与低流速区分界明显,均以近静水区域分割,二者形似太极图,两区如阴阳鱼环抱其中。不同的是,工况1中近静水域与池室中心线相交角度45°,工况2中相交角度为60°,近静水区域面积比工况1中更大。受主流偏转影响,表层流速范围0.11~0.84 m/s,最大流速低于0.90 m/s,出现在出垭口处及导流坎后方,最大流速区面积较小。池室内主流区沿池室中心线非对称分布,约占池室面积1/2,流速顺水流方向呈现先增大再减小后又增大的规律,流速范围为0.21~0.84 m/s,最大流速0.84 m/s,出现在垭口后端。非主流区分布在池室左侧及池室中心,面积较大,流速范围低于0.21 m/s,流向与主流接近相反。导流坎后方有低速回流区,池室右侧存在反向流速水流,反向流速对主流有减速的作用。低流速区为鱼类提供了休息区域。主流区和非主流区之间夹着近静水区域,流速低于0.11 m/s,形似条形。对比池室1和2内流场,出垭口处水流最大流速在池室2内由0.84 m/s减小至0.74 m/s,且高流速区域缩小,减速效果明显。

3.3.2临近底坡流速分布

选择鱼道底板上表面,平行于底坡的剖面,对临近底坡的流速场进行分析(图7c和图7d)。工况1、2的流速场整体分布规律大致相同:临底水流多态,流速分区明显。与表层水流相比,主流区扩大,主要分布在垭口段、池室右半部分及前半部分,约占池室面积3/4。主流区流速范围0.20~0.60 m/s,最大流速0.60 m/s,出现在导流坎附近和池室前端。垭口段的临底流速明显低于表面流速,但池室内临底流速略高于表面流速,或持平,原因是池内无辅助消能工进行底流消能。低流速区位于两侧近池壁处和导流坎后面,左侧区域较大,流速小于0.20 m/s。工况2与工况1相比,池室主流区面积缩小,低流速区面积达到池室面积的1/3。流速高于0.60 m/s的区域明显减小,证明导流坎的高度对临底流速场有一定的影响。

图7 不同工况下表面流和临底流速分布

3.3.3 横断面流速分布

为了进一步分析水池内的流速分布,选取横坐标=0.54 m与=0.82 m处的横断面,如测点位置图3a所示。工况1、2流速分布大致相同,主流区分布在断面左侧,低流速区分布在断面右侧(图8)。

图8 工况1、2时的横断面流速分布

横断面=0.54 m处流速分布如图8a所示,工况1的断面流速在0~0.41 m/s之间,高流速区在断面左侧底部位置。工况2断面流速范围0~0.45 m/s,最大流速0.45 m/s,分布在断面左侧底部。工况1中流速≥0.14 m/s的区域约占横断面1/2,工况2中流速≥0.14 m/s的区域约占横断面3/4,说明在横断面=0.54 m处,工况1的流速场分区明显,低流速区较宽阔,断面上层流速更低。横断面= 0.82 m处流速分布如图8b所示,2种工况的主流区都分布在断面左侧,工况2左侧主流区相对扩大。工况1断面流速范围0~0.38 m/s,流速≥0.25 m/s区域位于断面左侧底部;流速≤0.13 m/s的低流速区域约占横断面1/2。工况2断面流速范围0~0.38 m/s,流速≥0.25 m/s区域在池室断面左侧底部和顶部,高流速区域增大;流速≤0.13 m/s的低流速区域约占横断面1/3。不同工况下横断面流速场分布及最大流速有差异。同种工况下不同断面的流态多样化,与池室1相比,池室2的断面最大流速衰减9%~20%,流速降低,过鱼阻力明显降低。

4 结论与讨论

旋流式鱼道是对太极式鱼道的进一步改进,在池室内省去太极鱼道中太极圆盘,靠导流坎促成池室内旋流。通过数值模拟和物理模型试验研究,得出以下结论:

1)导流坎的引流作用显著,水跃偏移至池室右侧,将水流紊动剧烈变化控制在池室右侧及池室边壁。初始工况最大水深相比其他工况较低;右壁最浅水深由无导流坎时的1 cm增至加入导流坎后的2.4 cm。

2)旋流式鱼道表层流速场呈现明显的分区现象,水流多态。池室内主流区(流速变化范围0.21~0.84 m/s,最大流速0.84 m/s)和非主流区(0.21 m/s以下的低流速区和回流区)阴阳环抱,分区明显。主流区向池室右侧偏转,非主流区流速区域宽阔,适合洄游鱼类中途休憩。

3)池室2表面最大流速低于池室1,高流速区域缩小,减速效果明显;池室内临底流速场分区明显,主流区面积比表面流速场大,但流速低于表面流速场。

4)通过对不同位置横断面流速场分析,主流区主要位于池室右侧区域,低流速区分布在池室左侧区域,分区明显。=0.54 m横断面处,断面流速范围0~0.45 m/s;=0.82 m横断面处,断面流速范围0~0.38 m/s,说明水流得到进一步优化调整,流速减小,过鱼阻力降低。

旋流式鱼道作为一种近自然鱼道,具有小流量、大水深、低流速、大坡降和小工程量的特点,但其相关研究还处于起步阶段。影响水流水力特性因素众多,旋流式鱼道的细部结构需进一步优化。例如本文只研究了淹没式导流坎,未进行全挡式导流坎试验。导流坎的结构形式、旋转机制,其他消能工的增设以及鱼道最佳坡降等仍是今后要考虑的问题。

[1]李捷,李新辉,潘峰,等. 连江西牛鱼道运行效果的初步研究[J]. 水生态学杂志,2013,34(4):53-57.

Li Jie,Li Xinhui,Pan Feng,et al. Preliminary study on the operating effect of Xiniu fishway in Lianjiang River[J]. Journal of Hydroecology, 2013,34(4):53-57. (in Chinese with English abstract)

[2]南京水利科学研究所. 鱼道[M]. 北京:电力工业出版社,1982.

[3]王珂,刘绍平,段辛斌,等. 崔家营航电枢纽工程鱼道过鱼效果[J]. 农业工程学报,2013,29(3):184-189.

Wang Ke, Liu Shaoping, Duan Xinbin, et al. Fishway effect of Cuijiaying navigation-power junction project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 184-189. (in Chinese with English abstract)

[4]FAO. Fish Passes:Design, Dimensions and Monitoring[M]. Rome: The Food and Agriculture Organization of the United Nations, 2002.

[5]曹庆磊,杨文俊,周良景. 国内外过鱼设施研究综述[J].长江科学院院报,2010,27(5):39-43.

Cao Qinglei, Yang Wenjun, Zhou Liangjing. Review on study of fishery facilities at home and abroad[J]. Journal of Yangtze River Scientific Research Institute,2010, 27(5): 39-43. (in Chinese with English abstract)

[6]王兴勇,郭军. 国内外鱼道研究与建设[J]. 中国水利水电科学研究院学报,2005(3):222-228.

Wang Xingyong, Guo Jun. Brief review on research and construction of fish-ways at home and abroad[J]. Journal of China Institute of Water Resources and Hydropower Research, 2005(3): 222-228. (in Chinese with English abstract)

[7]闫滨,王铁良,刘桐渤. 鱼道水力特性研究进展[J]. 长江科学院院报,2013,30(6):35-42.

Yan Bin, Wang Tieliang, Liu Tongbo. Research Progress of Fishway's Hydraulic Characteristics in China and Abroad[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(6): 35-42. (in Chinese with English abstract)

[8]Rajaratnam N, Vinne G V, Katopodis C. Hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 1986, 112(10): 909-927.

[9]Rajaratnam N, Katopadis C, Paccagnan R. Field studies of fishways in Albeta[J]. Canadian Journal of Civil Engineering, 1992, 19(4): 627-638.

[10]Liu M, Rajaratnam N, Zhu D Z. Mean flow and turbulence structure in vertical slot fishway[J]. Journal of Hydraulics Engineering, 2006, 132(8): 765-777.

[11]Wu S, Rajaratnam N, Katopodis C. Structure of flow in vertical slot fishway[J]. Journal of Hydraulics Engineering, 1999, 125(4): 351-360.

[12]徐体兵,孙双科. 竖缝式鱼道水流结构的数值模拟[J]. 水利学报,2009,40(11):1386-1391.

Xu Tibing, Sun Shuangke. Numerical simulation of the flow structure in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2009, 40(11): 1386-1391. (in Chinese with English abstract)

[13]张国强,孙双科. 竖缝宽度对竖缝式鱼道水流结构的影响[J]. 水力发电学报,2012,31(1):151-156.

Zhang Guoqiang, Sun Shuangke. Effect of slot width on the flow structure of vertical slot fishway[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 151-156. (in Chinese with English abstract)

[14]边永欢,孙双科. 竖缝式鱼道的水力特性研究[J]. 水利学报,2013,44(12):1462-1467.

Bian Yonghuan, Sun Shuangke. Study on hydraulic characteristic of flow in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1462-1467. (in Chinese with English abstract)

[15]佟雪丰,李卫明,刘德富,等. 丹尼尔式鱼道内水流紊动特性试验研究[J]. 水电能源科学,2016,34(2):94-97,128.

Tong Xuefeng, Li Weiming, Liu Defu, et al. Test research on turbulence dynamic characteristics of water flow in daniel fishway[J]. Water Resources and Power, 2016, 34(2): 94-97, 128. (in Chinese with English abstract)

[16]Yagci O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure[J]. Ecological Engineering, 2009, 36(1): 36-46.

[17]Ead S A, Katopodis C, Sikora G J, et al. Flow regimes and structure in pool and weir fishways[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 379-390.

[18]Magura C R. Hydraulic Characteristics of Embedded Circular Culverts[D]. Winnipeg, Manitoba, Canada: Department of Civil Engineering, University of Manitoba, 2007.

[19]黄明海. 竖缝-潜孔组合式鱼道进鱼口渠段三维紊流数值模拟研究[C]//全国水力学与水利信息学学术大会.2009:7.

[20]郭坚,芮建良. 以洋塘水闸鱼道为例浅议我国鱼道的有关问题[J]. 水力发电,2010,36(4):8-10.

Guo Jian, Rui Jianliang. Question and suggestion on fishway construction in China: Lesson learned from the operation of Yangtang lock fishway[J]. Water Power, 2010, 36(4): 8-10. (in Chinese with English abstract)

[21]张裕平. 日本:茶道之邦话“鱼道”[J].中国三峡,2009(7):66-71.

[22]孙双科,张国强. 环境友好的近自然型鱼道[J]. 中国水利水电科学研究院学报,2012,10(1):41-47.

Sun Shuangke, Zhang Guoqiang. Environment-friendly fishway in close-to-nature types[J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(1): 41-47. (in Chinese with English abstract)

[23]李广宁,孙双科,郭子琪,等. 仿自然鱼道水力及过鱼性能物理模型试验[J]. 农业工程学报,2019,35(9):147-154.

Li Guangning, Sun Shuangke, Guo Ziqi, et al. Physical model test on hydraulic characteristics and fish passing performance of nature-like fishway[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 147-154. (in Chinese with English abstract)

[24]郄志红,郭丽云,吴鑫淼,等. 太极式鱼道水力特性试验研究及数值模拟[J]. 农业工程学报,2018,34(2):182-188.

Qie Zhihong, Guo Liyun, Wu Xinmiao, et al. Experimental study and numerical simulation of hydraulic characteristics of Tai Chi fishway[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 182-188. (in Chinese with English abstract)

[25]水利水电工程鱼道设计导则:SL609-2013[S]. 北京:中国水利水电出版社,2013.

[26]艾克明. 鱼道水力设计的基本要点与工程实例[J]. 水利科技与经济,2012,18(10):82-85.

[27]肖苡辀,王文娥,胡笑涛. 基于FLOW-3D的田间便携式短喉槽水力性能数值模拟[J]. 农业工程学报,2016,32(3):55-61.

Xiao Yizhou, Wang Wen’e, Hu Xiaotao. Numerical simulation of hydraulic performance for portable short-throat flume in field based on FLOW-3D[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 55-61. (in Chinese with English abstract)

[28]吕宏兴,裴国霞,杨玲霞. 水力学[M]. 北京:中国农业出版社,2002.

[29]王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社,2004.

[30]龚丽,吴一红,白音包力皋,等. 草鱼幼鱼游泳能力及游泳行为试验研究[J]. 中国水利水电科学研究院学报,2015,13(3):211-216.

Gong Li, Wu Yihong, Bai Yinbaoligao, et al. Experimental study on swimming capability and swimming behavior of juvenile grass carp[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(3): 211-216. (in Chinese with English abstract)

[31]Moriasi D N, Arnold J G, Liew M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the American Society of Agricultural and Biological Engineers (Transactions of the ASABE), 2007, 50(3): 885-900.

Establishment of swirling-flow fishway and analysis of its hydraulic characteristics

Qie Zhihong, Liu Hui, Wu Xinmiao, Ran Yanli

(,071001,)

The structure and flow pattern of traditional fishway are relatively simple, which is usually suitable for specific fish to pass through. However, there are many types of fish to be protected in rivers. Near natural fishway simulates natural form of fish and is expected to improve fish passing efficiency. Therefore, in order to enhance the meandering and naturalness of fish passing facilities, a swirling fishway structure with curved sidewall and diversion bank was proposed in this paper. The side wall of the swirl fishway adopted circular curve, and the contraction area between the chambers was smoothly connected by the reverse circular arc, which made the water flow close to the natural sinuous channel. The swirling fishway was obtained by improving Taiji fishway. Compared to Taiji fishway, it omitted the Taiji disc and was cheaper. At the same time, the water flow in the pond could be rapid and slow, or deep and shallow, highlighting the effect of Yin and Yang and enriching the flow pattern. Through the combination of numerical simulation and physical model test, the hydraulic characteristics of swirling fishway under different working conditions were explored. First of all, through physical model test, the water depth along the wall and the flow pattern distribution of the two sides of the fishway under different working conditions were obtained, and the effect of fish passing was observed. The accuracy and rationality of the numerical calculation were verified by comparing the water depth data obtained from the physical model test and the numerical calculation results. The CFD numerical calculation method was applied to simulate distribution of surface velocity field and internal velocity field that were difficult to be measured by physical model. The free surface flow velocity, the velocity near the bottom slope and the velocity distribution in key cross section of the swirl fishway were further analyzed. According to the design guidelines of fishway, the basic points of hydraulic design and the gravity similarity criteria, the physical test model was established. After the establishment of the physical model, the water flow test under different conditions was carried out, and the water depth of the measuring point was measured by the water level probe. The results showed that the swirling flow in the fishway was zigzag and the flow pattern was rich. The maximum relative error of simulated and measured water depth was 14.2%, less than the allowable value of 15%. The variation trend of the measured and numerical water depth along the wall was approximately the same. It indicated that the simulated method was reliable. The velocity in the main flow area of the fish passage was not higher than 0.84 m/s, meeting the requirements of fish passage. The fish passage object could be traced smoothly in the fish passage. The slow flow or return area on both sides of the main flow could be used for fish rest, which showed the rationality of the fish passage shape. The depth of the shallowest water increased from 1 cm without diversion sill to 2.4 cm with diversion sill. After scarification, although the upper water flow could still overflow the diversion scarp and enter the pool chamber, the shallowest water depth on the left side of the pool chamber was about 0.5 cm higher than that on the right side, and the water depth growth was smaller. The fishway proposed in this paper enriches the form of fishway and can guide design and construction of similar fishways.

numerical analysis; flow pattern; flow velocity; swirling-flow type; fishway

郄志红,刘辉,吴鑫淼,冉彦立. 旋流式鱼道的构建与水力特性分析[J]. 农业工程学报,2020,36(3):119-125.doi:10.11975/j.issn.1002-6819.2020.03.015 http://www.tcsae.org

Qie Zhihong, Liu Hui, Wu Xinmiao, Ran Yanli. Establishment of swirling-flow fishway and analysis of its hydraulic characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 119-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.015 http://www.tcsae.org

2019-09-24

2019-11-04

河北省自然科学基金项目(E2017204125);河北省水利科研和推广计划项目(2018-29);河北省研究生创新能力培养资助项目(CXZZSS2019057)

郄志红,教授,博士生导师,研究方向为水工结构优化与维护管理。Email:qiezhihong@163.com

10.11975/j.issn.1002-6819.2020.03.015

TV131; S956.3

A

1002-6819(2020)-03-0119-07

猜你喜欢

横断面旋流导流
导流格栅对发射箱内流场环境影响研究
烧结SDA脱硫塔旋流片结构优化
S弯进气道出口旋流对轴流压气机性能的影响
非均布导流下页岩气藏压裂水平井产量模拟
探讨水利水电施工过程中的导流问题及技术
叶片式旋流畸变发生器生成旋流角的影响因素
水利工程施工导流及围堰技术的应用探究
青中年血透患者低社会支持度横断面分析
城市道路的横断面设计论述
绿色生态型城市道路横断面设计分析