APP下载

稻壳-鸡粪好氧高温堆肥体系中磷石膏消纳能力的研究

2020-03-03陈雪娇王宇蕴

农业工程学报 2020年1期
关键词:堆体稻壳鸡粪

徐 智,张 勇,陈雪娇,王宇蕴

稻壳-鸡粪好氧高温堆肥体系中磷石膏消纳能力的研究

徐 智,张 勇,陈雪娇,王宇蕴※

(云南农业大学资源与环境学院,昆明 650201)

为探究堆肥体系中磷石膏的消纳能力,增加磷石膏资源化利用强度,该研究以稻壳作为主要原料,以鸡粪为辅料,添加基于堆肥有机物料(干质量)的0、10%、20%、30%和40%磷石膏(CK、P10、P20、P30和P40)作为堆肥调理剂,研究其对高温堆肥过程中堆肥的物理、化学、生物指标以及堆肥腐熟后堆料品质性状的影响,从肥料化的角度,探究稻壳-鸡粪堆肥体系中磷石膏的消纳能力。结果表明,相比于CK而言,磷石膏添加量在10%~30%明显促进了堆料温度的快速上升和高温时间,增加堆肥的发酵强度。当磷石膏的添加量超过20%以后,随着磷石膏添加量的增加,堆肥持续高温期的时间有明显减少。添加40%磷石膏处理稀释效应太明显,堆肥结束以后,堆肥的总有机碳的绝对含量较低,导致堆肥产物的有机质含量(34.3%)不达标。添加磷石膏可以提高堆体的种子发芽指数,到堆肥结束时,CK、P10、P20、P30和P40的种子发芽指数分别为65.43%、86.54%、97.52%、81.35%和71.40%。但P40处理到堆肥结束时,水溶性铵态氮含量还高达528.2 mg/kg。与CK处理相比,P10、P20和P30处理的养分含量增加显著, 且均符合NY525-2012标准要求。各处理重金属含量均未超过NY525-2012标准的要求,但磷石膏的添加仍有增加堆肥重金属的风险。综合添加磷石膏对堆肥腐熟度的影响和堆肥品质的影响来看,在稻壳为主要原料的堆肥体系中,添加有机物料干质量的30%的磷石膏,是本堆肥体系磷石膏最大的消纳量。

稻壳;鸡粪;堆肥;磷石膏;消纳能力

0 引 言

磷石膏是磷肥生产过程中的一种酸性副产品[1]。磷肥工业中每生产1 t磷酸大约产出5 t的磷石膏[2]。据统计2018年中国磷石膏产量达到7 800万t,其综合利用率只有40%[3]。磷石膏主要利用领域为工业和建筑业。此外,磷石膏也可用来改良盐碱土,提高土壤肥力[4]。但是磷石膏本身具有强酸性,可能有重金属污染风险,对农作物成长与农产品安全存在一定隐患[5],极大地限制了磷石膏直接农用。

大量的研究表明,农业有机固体废弃物与磷石膏联合堆肥,是实现磷石膏的资源化利用一条有效途径[6-8]。因为磷石膏的强酸性、颗粒细小、容重大等特点,结合绝大多数以畜禽粪便为主的堆肥体系的实际,从影响堆肥进程的角度来看适宜磷石膏的添加量为10%左右[9]。限制了磷石膏在堆肥体系的大量应用,影响磷石膏农用的消纳能力。堆肥体系对磷石膏的消纳能力可能跟堆肥产品的利用方向以及堆肥原料性质,特别是原料的孔隙度和容重有密切关系,如:陈雪娇等[6]研究表明,在稻壳与油枯联合堆肥开发基质的研究中,添加磷石膏可以明显增加堆体维持高温时间,加快堆体腐熟进程,并且磷石膏的添加量最多可以达到40%而不至于影响堆肥进程。

中国是一个水稻生产和加工大国,每年产生稻壳0.4亿吨[10]。稻壳在堆肥体系中是很好的辅料,其在调节C/N比的同时,还有利于堆料的通风和供氧[11]。但在中国的某些区域,稻壳的产生量大,畜禽粪便等高氮原料又不足的情况下,稻壳作为堆肥处理,只能当作主要原料来对待,而稻壳作为主要原料来堆肥,稻壳孔隙度大、容重小就成为它的弊端[12]。利用磷石膏作为堆肥原料的填充物,正好可以有效改善堆肥物料的孔隙度和容重,达到促进堆肥进程的目的。但是磷石膏添加量过多,又会影响堆肥品质[6]。因此,本研究以稻壳作为主要原料,以适当量的鸡粪为辅料,通过添加基于堆肥有机物料(干质量)不同磷石膏比例,研究其对高温堆肥过程中堆体的温度、酸碱度(pH)和种子发芽指数(germination index,GI)等物理、化学、生物指标的影响以及堆肥腐熟后堆料品质性状的影响,探究稻壳-鸡粪堆肥体系中磷石膏的消纳能力,为最大实现磷石膏的资源化利用提供科学依据。

1 材料与方法

1.1 试验材料

试验于2017年4月至2017年5月在云南农业大学温室大棚内进行,环境温度在20~26 ℃间。稻壳来自晋宁科贸有限公司,磷石膏来自晋宁昆阳磷肥厂,鸡粪来自昆明云南农业大学养殖基地,其主要成分见表1。

表1 主要堆肥原料的基本理化性质

注:“-”表示该原料的该指标未检或未检测出。

Note: “-” indicates the index of the material was not detected.

1.2 试验设计

选取泡沫塑料箱(55 cm×25 cm×34 cm)作为好氧发酵装置。先用保鲜膜覆盖各个箱体四周,再用透明胶带缠绕,为的是加强泡沫箱的保温作用。最后在箱体底部的最右侧打一个小孔,插入皮管通气。

磷石膏过2 mm筛备用。以稻壳为主要原料,以鸡粪为辅料,按照C/N比为30配制和混合有机物料。保证每个堆肥处理的有机物料总量相等前提下,按照有机物料干重的10%、20%、30%和40%添加磷石膏(磷石膏的添加量以干重计,分别记作P10、P20、P30和P40处理),并以不添加磷石膏添的处理为对照(记为CK处理)。总共5个处理,每个处理重复3次,各处理含水率调为55%。发酵过程中通气频率设定为6 min/h,通气速率为5 L/min。堆肥前一周每日翻堆1次,之后每3 d翻堆1次。

1.3 采样与测定

1.31 样品采集

在堆肥的第0天、第3天、第6天、第12天、第18天、第24天和第30天进行取样。采用多点取样法获取300 g混合均样。平均分成2份,1份风干和磨碎,过1 mm筛备用;1份于4 ℃冰箱保存待用。

1.32 指标测定与方法

每日上午10时采用温度计测定箱体中心温度,同时测定周围环境温度。称取待测鲜样5 g,与50 ml蒸馏水混匀,振荡2 h后过滤,吸取滤液5 ml加到垫有1张9 cm定性滤纸的干燥培养皿中,每个培养皿均放入20粒饱满的水芹种子(),置于25 ℃恒温培养箱中培养48 h,测定种子发芽率与根长。同时以蒸馏水为空白,每个处理重复3次。

根据黄红英等[13]的方法计算种子发芽指数(germination index,GI);根据Sciubba等[14]的方法测定酸碱度(pH)和电导率(electrical conductivity,EC);全氮(total nitrogen,TN)和总有机碳(total organic carbon,TOC)测定方法参照农业部有机肥料NY525-2012标准进行[15]。

称取2 g鲜样放置于三角瓶中,并加入1 mol/L氯化钾浸提液40 mL,于恒温震荡机中180 r/min下振荡60 min,再用定性滤纸过滤[16]。过滤液体保存在4 ℃冰箱,用Auto Analyz 3 High Resolution连续流动分析仪测定浸提液中水溶性NH+4-N含量。

堆肥原料及产品重金属元素Cd、Pb和Cr采用原子吸收光度法进行分析,As和Hg采用原子荧光仪进行测定[17]。

1.4 数据处理与分析

采用Microsoft Excel 2010软件作图,运用Microsoft Excel 2010软件对试验数据进行统计处理,SPSS 21软件对数据进行LSD多重比较,<0.05表示差异显著。

2 结果与讨论

2.1 磷石膏对高温堆肥过程的影响

2.1.1 温度变化

在高温好氧堆肥发酵过程中,堆体内部温度是表征微生物活性与有机物料腐熟进程的主要指标,也是整个堆肥工艺中的关键因素。研究表明,堆体内部温度≥50 ℃并维持5~7 d,会对堆料中的致病微生物和害虫卵起到杀害作用,从而达到堆肥工艺的安全标准[18]。从图1可知,各处理堆体内部温度呈现先快速上升,再保持稳定,后期呈下降趋势。CK、P10、P20、P30和P40进入高温期的时间分别为第4天(d)、第2天、第2天、第3天和第3天;维持高温期间的时间分别为8、11、13、10和9 d。说明磷石膏添加可能增加了堆料的孔隙,有利于热量的累积,即添加适量磷石膏能够加快堆体达到高温的速度,并维持堆体高温。但当磷石膏的添加量超过20%以后,随着磷石膏添加量的增加,堆肥持续高温期的时间有所减少,充分说明太多的磷石膏添加也可能影响堆肥的发酵强度。

2.1.2 酸碱度(pH)与电导率(EC)的变化

酸碱度(pH)是影响微生物活动的重要因素,是直接反应内部酸碱程度的重要指标。从图2a可知,pH值变化范围在3.0~8.0之间,各处理pH值随着堆肥的进行,总体呈现先缓慢上升后下降趋势,均在第18天达到最大值。添加磷石膏明显地降低了堆料的pH值,处理CK、P10、P20、P30和P40初始pH值分别为5.12、4.83、4.73、3.87和3.27,至堆肥结束时,各组处理pH值分别为6.80,6.15,6.47,6.01和5.02,这可能和磷石膏具有强酸性(pH值为1.53)有直接关系。

注:CK,未添加磷石膏;P10,添加10%磷石膏;P20,添加20%磷石膏;P30,添加30%磷石膏;P40,添加40%磷石膏,下同。

电导率(electrical conductivity,EC)是表征堆肥盐分含量的重要指标。图2b中各处理EC值呈现先上升再下降趋势。初期各处理EC值分别为1.67、2.58、2.70、3.53和3.93,至结束时分别为2.04、3.16、3.38、3.50和3.59。堆肥初期及堆肥结束时所添加磷石膏的各组处理EC值均大于CK处理,且磷石膏添加比例越大,EC值越大,这可能与磷石膏本身EC值偏高有关。聂艳丽等[19]认为堆肥腐熟后物料EC值在0.75~3.50 ms/cm之间为宜,除了P40处理不符合其要求,其他处理均满足条件。

2.1.3 总有机碳(TOC)含量变化

图2c中明显可以看出,各组处理的总有机碳(total organic carbon,TOC)含量整体呈现下降趋势,且由于磷石膏的稀释效应,磷石膏的添加可以显著降低堆肥物料的TOC含量。刘媛媛等[7]的研究结果表明,磷石膏的添加可以增加堆肥的发酵强度,本研究的研究结果也进一步印证适当的磷石膏的添加有利于堆肥的发酵强度(图1),正因为磷石膏促进了堆肥的发酵,到堆肥结束时添加磷石膏处理的TOC减少的幅度普遍较CK高,堆肥结束后CK、P10、P20、P30和P40处理较堆肥开始时,TOC含量分别减少了11.32%、12.78%、12.53%、12.19%和11.61%。当磷石膏的添加量超过20%以后,随着磷石膏添加量的增加,因为堆肥持续高温期的时间有所减少,减弱了堆肥的发酵强度,故30%和40%磷石膏添加量处理TOC绝对损失量较20%磷石膏添加量处理要少。堆肥TOC的变化与堆肥温度反应的磷石膏影响堆肥强度的趋势一致(图1)。但是添加40%磷石膏处理由于磷石膏添加量大,稀释效应太明显,堆肥结束以后,堆肥的TOC绝对含量较低,可能会导致堆肥产物的有机质含量不达标。

2.1.4 水溶性铵态氮(NH4+-N)含量的变化

从图2d可以看出来,堆体发酵前期,各处理水溶性NH+4-N含量迅速增加,在第6天达到最大值,之后迅速下降。堆肥pH是影响堆肥过程中NH3挥发的重要因素[20-22],可能是因为强酸性磷石膏的添加,显著地降低了堆体pH值,进而减少NH3在高温期挥发,所以,堆肥0~6 d,添加磷石膏处理的水溶性NH4+-N含量增速高于CK处理。可能是发酵强度的影响(图1和图2b),导致CK处理NH4+-N含量下降较慢,到堆肥结束时NH4+-N浓度还有437.1 mg/kg,而40%磷石膏的添加量太多,导致堆肥的pH值太低(图2a),可能是P40处理NH4+-N含量下降较慢的重要原因,到堆肥结束时其NH4+-N含量还有528.2 mg/kg。这些结果与陈雪娇研究的不同磷石膏对稻壳与油枯堆肥过程水溶性NH4+-N含量的影响结果相似[7]。按照堆体发酵腐熟时水溶性NH4+-N含量小于400 mg/kg要求[23],处理P10、P20和P30均符合堆肥腐熟的要求。

图2 堆肥过程中化学和生物指标变化

2.1.5 种子发芽指数(GI)的变化

堆肥的生物指标主要体现在堆肥的成品对植物生长的影响及堆肥中微生物的变化,其中包括种子发芽指数(germination index,GI)。未腐熟的堆肥物料对植物有一定毒害,而GI值是测定堆肥原料有无毒性最敏感的指标。当GI值>50%时,堆肥毒性较低;当GI值>80%,堆肥完全腐熟[24]。如图2e所示,至堆肥结束时,各处理的GI值相应为65.43%、86.54%、97.52%、81.35%和71.40%。说明添加磷石膏可以提高堆体GI值,可能是因为磷石膏的添加增加了堆体孔隙度,良好的水气条件促进微生物的生长[16],增加了堆肥的发酵强度,这一结果与图1和图2b的结果相互印证。相比于P10、P20和P30处理,P40处理因磷石膏添加量过多,影响了其堆肥发酵的强度(图1和图2c),同时可能因为P40有较高的EC值(图2b),所以P40处理的GI值明显低于P10、P20和P30 处理。说明添加过多的磷石膏对堆肥的腐熟程度可能有抑制作用。

2.2 堆肥品质的影响

与CK处理比较,堆肥结束后,P10、P20和P30处理的养分含量增加显著,且总养分含量≥5%(表2),由于P40 处理添加磷石膏量过大,稀释效应明显,堆肥结束时TOC绝对含量低(图2c),导致其堆肥产品有机质含量<45%。随着磷石膏添加量的增加,堆肥产品的重金属含量均表现出明显的增加(表2),但堆肥各处理重金属的含量均符合NY525-2012标准要求[15]。参照NY525-2012标准要求[15],30%磷石膏添加量为本堆肥体系最大消纳量。

表2 堆肥的品质性状

注:CK,未添加磷石膏; P10,添加10%磷石膏; P20,添加20%磷石膏; P30,添加30%磷石膏; P40,添加40%磷石膏。同一列不同堆肥体系内的不同小写字母表示在<0.05水平上差异显著。

Note: CK, added without phosphogypsum; P10, added 10% phosphogypsum; P20, added 20% phosphogypsum; P30, added 30% phosphogypsum; P40, added 40% phosphogypsum. Different lowercase letters in the same column of different composting systems show significant differences at<0.05.

3 结 论

相比于稻壳为主要原料的堆肥处理(CK)而言,磷石膏的添加可以增加堆肥的发酵强度,显著增加堆肥产品的养分含量,其中堆肥过程中添加10%~30%磷石膏处理能够获得较为理想的腐熟度和符合NY525-2012标准要求的养分含量,虽然添加10%~40%磷石膏后堆肥产品的重金属含量均不超标,但磷石膏的添加有增加堆肥重金属的风险。

综合添加磷石膏对堆肥腐熟度的影响和堆肥品质的影响,在稻壳为主要原料的堆肥体系中,添加有机物料干质量的30%的磷石膏,是本堆肥体系磷石膏最大的消纳量。

[1] 谷林静,白来汉,张乃明,等. 菌根技术对磷石膏农用的强化效应[J]. 农业工程学报, 2013,29(17):152-159.

Gu Linjing, Bai Laihan, Zhang Naiming, et al. Strengthening effect of mycorrhizal technology on application of phosphogypsum in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 152-159. (in Chinese with English abstract)

[2] Novikova A P, Perova N M, Chupakhin O N. Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): Role of natural attenuation processes[J]. Marine Pollution Bulletin, 2011, 62(12): 2787-2796.

[3] 叶学东. 2018年我国磷石膏利用现状、问题及建议[J]. 磷肥与复肥,2019,34(7):1-4.

Ye Xuedong. Current situation, existing problems and suggestions of phosphogypsum utilization in China in 2018[J]. Phosphate & Compound Fertilizer, 2019, 34(7): 1-4. (in Chinese with English abstract)

[4] Alenazy A A, Albarakah F, Aloud S, et al. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil[J]. Archives of Agronomy & Soil Science, 2018, 64(10): 1394-1406.

[5] 张丽,岳献荣,谷林静,等. 接种丛枝菌根真菌和施用磷石膏对烤烟生长及砷累积的影响[J]. 农业环境科学学报,2014,33(7):1294-1303.

Zhang Li, Yue Xianrong, Gu Linjing, et al. Effects of arbuscular mycorrhizal fungi and phosphogypsum on growth and arsenic accumulation of tobacco (L.)[J]. Journal of Agro-Environment Science, 2014, 33(7): 1294-1303. (in Chinese with English abstract)

[6] 陈雪娇,王宇蕴,徐智,等. 不同磷石膏添加比例对稻壳与油枯堆肥过程的影响及基质化利用的评价[J]. 农业环境科学学报,2018,37(5):1001-1008.

Chen Xuejiao, Wang Yuyun, Xu Zhi, et al. Effect of phosphogypsum addition on the rice husk and oil cake composting process and evaluation of its physicochemical character as a substrate[J]. Journal of Agro-Environment Science, 2018, 37(5): 1001-1008. (in Chinese with English abstract)

[7] 刘媛媛,徐智,陈卓君,等. 外源添加磷石膏对堆肥碳组分及腐殖质品质的影响[J]. 农业环境科学学报,2018,37(11):2483-2490.

Liu Yuanyuan, Xu Zhi, Chen Zhuojun, et al. Effects of phosphogypsum addition on carbon fractions and humus quality during composting[J]. Journal of Agro-Environment Science, 2018, 37(11): 2483-2490. (in Chinese with English abstract)

[8] 罗希榕,覃成,刘方,等. 添加磷石膏城市垃圾堆肥对草坪草生长及草坪质量的影响[J]. 贵州农业科学,2009,37(5):109-112.

Luo Xirong, Qin Cheng, Liu Fang, et al. The effect of urban rubbish compositing manure with different phosphogypsum proportion on grass growth and lawn quality[J]. Guizhou Agricultural Sciences, 2009, 37(5): 109-112.(in Chinese with English abstract)

[9] 范茂攀,汤利,徐智,等. 橡胶籽油枯-锯末-磷石膏联合堆肥过程研究[J]. 云南农业大学学报,2013,28(5):750-754.

Fan Maopan, Tang Li, Xu Zhi, et al. Study on co-composting process of rubber seed oil cake, sawdust and phosphogypsum[J]. Journal of Yunnan Agricultural University, 2013, 28(5): 750-754. (in Chinese with English abstract)

[10] Zheng Jilu. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 30-35.

[11] 李赟,袁京,李国学,等. 辅料添加对厨余垃圾快速堆肥腐熟度和臭气排放的影响[J]. 中国环境科学,2017,37(3):1031-1039.

Li Yun, Yuan Jing, Li Guoxue, et al. Use of additive to control odors and promote maturity of municipal kitchen waste during aerobic com posting[J]. China Environmental Science, 2017, 37(3): 1031-1039. (in Chinese with English abstract)

[12] 尚秀华,谢耀坚,杨小红,等. 4种不同氮源对稻壳腐熟处理效果的研究[J]. 热带作物学报,2011,32(12):2226-2230.

Shang Xiuhua, Xie Yaojian, Yang Xiaohong, et al. The effect of four different nitrogen sources on rice husk compost[J]. Chinese Journal of Tropical Crops, 2011, 32(12): 2226-2230. (in Chinese with English abstract)

[13] 黄红英,孙恩惠,武国峰,等. 麦秸秸秆花盆堆肥化研究及评价[J]. 农业环境科学学报,2015,34(12):2386-2393.

Huang Hongying, Sun Enhui, Wu Guofeng, et al. Composting of wheat straw flowerpots and its evaluation[J]. Journal of Agro-Environment Science, 2015, 34(12): 2386-2393. (in Chinese with English abstract)

[14] Sciubba L, Cavani L, Marzadori C, et al. Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality[J]. Biology and Fertility of Soils, 2013, 49(5): 597-608.

[15] 中华人民共和国农业部. 有机肥料:NY525-2012[S]. 2012, 03.

[16] 谷思玉,蔡海森,闫立龙,等. 鸡粪与稻壳好氧堆肥的不同C/N研究[J]. 东北农业大学学报,2015,46(4):51-58.

Gu Siyu, Cai Haisen, Yan Lilong, et al. Study on different C/N ratio of aerobic composting between chicken manure and rice husk[J]. Journal of Northeast Agricultural University, 2015, 46(4): 51-58. (in Chinese with English abstract)

[17] 王萍,刘静,朱健,等. 岩溶山区磷石膏堆场重金属迁移对耕地质量的影响及污染风险管控[J]. 水土保持通报,2019,39(4):294-299.

Wang Ping, Liu Jing, Zhu Jian, et al. Impacts of heavy metal migration on quality of cultivated land and control of pollution risk in phosphogypsum yard in Karst Mountain area[J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 294-299. (in Chinese with English abstract)

[18] 中华人民共和国卫生部.粪便无害化卫生要求:GB 7959-2012[S]. 2012-11.

[19] 聂艳丽,周跃华,曾郁珉,等. 甘蔗渣堆肥化处理及用作山桂花育苗基质[J]. 东北林业大学学报,2009,37(2):49-52.

Nie Yanli, Zhou Yuehua, Zeng Yumin, et al. Sugarcane bagasse compost used as param michelia baillonii nursery substrate[J]. Journal of Northeast Forestry University, 2009, 37(2): 49-52. (in Chinese with English abstract)

[20] Mahmoud E, Abd ElKader N. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost[J]. Land Degradation & Development, 2015, 26(8): 819-824.

[21] Yang Fang, Li Guoxue, Shi Hong, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36(2): 70-76.

[22] Hu Weitong, Zheng Guanyuan, Fang Di, et al. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study[J]. Waste Management, 2015, 44(7): 55-62.

[23] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.

[24] Wong J W C, Karthikeyan O P, Selvam A. Biological nutrient transformation during composting of pig manure and paper waste[J]. Environmental Technology, 2017, 38(6): 754-761.

Processing capacity of phosphogypsum in rice husk-chicken manure high-temperature composting system

Xu Zhi, Zhang Yong, Chen Xuejiao, Wang Yuyun※

(,,650201,)

The purpose of this study was to explore the processing capacity of phosphogypsum in the composting system and improve the resources utilization intensity of phosphogypsum. The rice husk was used as the main raw material, the chicken manure was used as auxiliary organic material, and the phosphogypsum was used as a compost conditioner. The rice husk and chicken manure were thoroughly mixed in a certain proportion to obtain organic raw materials for composting, which C/N ratio of the raw material was 30. According to the different amount of phosphogypsum added in the composting system, 5 composting treatments were set, including added without phosphogypsum (CK), added 10% phosphogypsum (P10), added 20% phosphogypsum (P20), added 30% phosphogypsum (P30) and added 40% phosphogypsum (P40), which were based on the proportion of organic materials (dry weight) of composting. The moisture content of the composting mixture of 5treatments was adjusted to 55%, and the composting was carried out. The physical, chemical and biological indicators during the composting process and organic matter content, nutrient properties (N, P2O5and K2O), heavy metal content (Hg, As, Cd, Pb and Cr) of compost at the end of composting were studied. The results showed that compared with CK, 10%~30% phosphogypsum addition significantly promoted the rising temperature of composting and maintaining the high-temperature time, increased the fermentation strength of the composting. With the increasing of the addition amount of phospgypsum, the pH value of the composting significantly decreased, and the electrical conductivity value of the composting significantly increased. At the end of composting, the pH value and electrical conductivity value of P40 treatment were 5.02 and 3.59 ms/cm, respectively. After the end of composting, the total organic carbon reduction of treatments with phosphogypsum were generally higher than that of CK (the total organic carbon content of CK, P10, P20, P30 and P40 decreased by 11.32%, 12.78%, 12.53%, 12.19% and 11.61%, respectively), which further indicated that the addition of phosphogypsum was beneficial to increase the fermentation strength of the composting. But the dilution effect of 40% phosphogypsum (P40) was too obvious, resulting in the organic matter content of the compost product not meeting the NY525-2012 standard, which the organic matter content of P40 was 34.3%. Phosphogypsum addition could increase the germination index value of the compost, by the end of composting, the germination index values of CK, P10, P20, P30 and P40 were 65.43%, 86.54%, 97.52%, 81.35% and 71.40%, respectively. However, when P40 was processed to the end of composting, the water-soluble NH4+-N content was still up to 528.2 mg/kg. Compared with CK, the nutrient content of P10, P20 and P30 treatment increased significantly, and all of them met requirements of the NY525-2012 standard. With the increase of the addition amount of phosphogypsum, the contents of Hg, As, Cd, Pb and Cr in composting products increased significantly, and the contents of heavy metals in each treatment did not exceed requirements of the NY525-2012 standard, indicating that the addition of phosphogypsum still had the risk of increasing the contents of heavy metals during the composting, therefore, the heavy metal content of phosphogypsum should be taken into account when it was used as composting conditioner. Thus, the composting system with rice husk as the main raw material, adding 30% phosphogypsum as the dry weight of organic material was the maximum consumption of phosphogypsum. This study explored the processing capacity of phosphogypsum in the rice husk-chicken manure composting system, and the results provided a scientific basis for phosphogypsum promoting the composting efficiency of rice-husk as the main raw material and maximizing the utilization of phosphogypsum in some areas of China in which rice husk production was high and livestock waste was scarce as composting auxiliary materials.

rice husk; chicken manure; composting; phosphogypsum; processing capacity

徐 智,张 勇,陈雪娇,王宇蕴. 稻壳-鸡粪好氧高温堆肥体系中磷石膏消纳能力的研究[J]. 农业工程学报,2020,36(1):208-213.doi:10.11975/j.issn.1002-6819.2020.01.024 http://www.tcsae.org

Xu Zhi, Zhang Yong, Chen Xuejiao, Wang Yuyun. Processing capacity of phosphogypsum in rice husk-chicken manure high-temperature composting system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 208-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.024 http://www.tcsae.org

2019-09-01

2019-12-23

国家重点研发计划项目(2016YFD0800607);国家自然科学基金项目(31760609);云南农业大学自然科学青年科研基金项目(A2006097);云南省万人计划青年拔尖人才项目;云南省畜禽粪便资源化产业技术体系畜禽养殖废物生物转化岗位专家项目

徐 智,博士,副教授,主要从事有机固体废弃物资源化利用方面的研究。Email:xuzhi9910@126.com

王宇蕴,讲师,主要从事养分循环利用方面的研究。Email:yuyunwhere@163.com

10.11975/j.issn.1002-6819.2020.01.024

X712

A

1002-6819(2020)-01-0208-06

猜你喜欢

堆体稻壳鸡粪
稻壳兴衰史
堆积燃烧清洗稻壳制备SiO2特性
食用菌菌糠堆肥化发酵特性及腐熟进程
番茄秸秆添加不同辅料后的好氧堆肥研究
利用鸡粪养殖蚯蚓技术
扮演一天稻壳猫
鸡粪无害化处理与利用技术简介
鸡粪如何加工成鱼饲料
经堆肥处理蚕沙可达到资源化利用的要求
生活垃圾和粪便堆肥温度变化及物质组分转化特性研究