基于有效积温的中国水稻生长模型的构建
2020-03-03苏李君刘云鹤王全九
苏李君,刘云鹤,王全九,2
基于有效积温的中国水稻生长模型的构建
苏李君1,刘云鹤1,王全九1,2※
(1. 西安理工大学省部共建西北旱区生态水利国家重点实验室,西安 710048;2. 中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100)
有效积温是指作物生长至某一生育阶段所需要积累的有效温度,是反映气象条件对作物生长影响的主要指标,研究有效积温对作物生长过程的影响对提高农业生产效率具有重要意义。该文以有效积温作为气象因子,收集中国气象数据网中的气象数据和已发表的学术论文中的水稻生长数据,建立了描述水稻生长过程的叶面积指数和干物质积累量的普适Logistic模型,并研究了水稻最大叶面积指数与最大干物质积累量、收获指数(作物经济产量与生物产量的比值)及降水量之间的关系。结果表明:有效积温为1 000 ℃左右时,水稻叶面积指数最大,且此时干物质增长速率最大;水稻最大叶面积指数与最大干物质积累量之间表现为线性关系;最大叶面积指数和收获指数、降水量之间为二次抛物线关系,当降水量为670.5 mm时,最大叶面积指数为7.93,对应的水稻收获指数达到最大值0.50。该研究对于构建其他作物的生长模型具有一定的参考意义。
降水量;生物量;水稻;有效积温;作物生长指标;Logistic模型
0 引 言
水稻是中国的主要粮食作物之一,其种植面积占谷物总种植面积的32.5%,产量占粮食总产量的37.9%[1]。但近年来,随着气候变化,水稻生育期内的高温和暴雨天气频发,直接导致了稻米质量下降,甚至造成减产,粮食安全受到威胁[2]。有研究表明,相较于20世纪,21世纪水稻生育期内的平均日照时数减少了11.93%,总降水量增加了1.59%,平均降水强度增加了3.22%,而温度每升高1 ℃,水稻单产将下降4%~10%[3]。因此,为了水稻生产管理适应气候变化,结合气象因素来研究气候变化情况下水稻的生长特征,建立普适的水稻生长模型已经刻不容缓。
近年来众多学者对作物生长指标的模型研究较多,王信理[4]对Logistic方程进行了深入分析,考虑了作物群体状态与时间的影响,建立了Logistic方程修正形式,即作物普适生长函数。该模型对于后季稻(晚熟稻)以及南亚热带等稻区的杂交水稻生长后期干物质积累下降趋势的描述较好,拟合效果显著。林瑞余等[5]研究发现其试验所选3种品种水稻的干物质积累随时间变化趋势均为“S”型,并利用三次曲线模型和Logistic模型分别模拟,结果显示三次曲线拟合精度较高。李艳大等[6]将水稻不同生育期的地上干物质累积量与辐热积进行了“归一化”处理,经建模及模型筛选后,选择拟合效果好且各参数具有生物学意义的Richards模型作为水稻相对干物质积累的动态模型。上述研究表明,相同地区不同处理的水稻的生长特征可采用归一化的模型进行描述,但不同地区的水稻是否仍然具有相同生长特征,需要深入分析,为建立更加普适的模拟模型提供依据。
水稻是喜高温、多湿、短日照作物,因此以温度及降雨状况作为因子来建立模型,能较好地反映水稻的生长状况。有效积温(growing degree days,GDD)在17世纪30年代首次被提出,当时是作为一种生态系统指标来研究温度的日变化,同时研究其对不同植物生长阶段的影响,作为发展未来气候适应性作物的基础[7]。它是指作物在某一生育阶段内所积累的有效温度,反映了作物在该生育期所需要的热量大小,相较于生育期天数更为稳定,因此以有效积温取代播种后天数来建立作物生长模型,能更为精确的达到预测作物产量的目的[8]。本研究将基于有效积温来模拟水稻的生长变化特征,采用Logistic模型对水稻的叶面积指数和干物质积累量进行分析,建立普适的水稻生长指标与有效积温的关系,确定合理的水稻收获指数,提高作物生产效率,为更大范围水稻生长特征分析,提供理论依据和相应技术参数。
1 数据来源与研究方法
1.1 数据来源
水稻生长特征数据资料源自国内外已发表的89篇文章(1985年—2018年),遍及全国63个地点(不含香港、澳门、台湾地区),气象数据均来自中国气象数据网。在采集作物生长数据时,遵循了以下原则:1)既直接获取原文章中提供的数据,同时也利用GetData Graph Digitizer,根据文章中的曲线图获取数据;2)优先选择普遍栽培技术和施肥、灌溉条件下的作物生长数据,不选择未广泛采用的新技术管理下的数据;3)每个地区尽量获取3组以上数据样本,但少数地区因种植和研究较少,仅取得1~2组数据样本。
图1显示了本研究所采用的水稻种植地区分布图,主要分布在东北、华东、华中和华南地区。种植地区土壤质地以水稻土为主,肥力均匀。各地区不同品种水稻的播种时间均集中在4月中旬—5月下旬,收获时间集中在同年9月下旬—10月上旬。水稻生长期间高温多雨,未处于淹水状态时土壤含水量可达到田间持水量的80%左右。试验地多以尿素(氮肥)、K2O(钾肥)、P2O5(磷肥)作基肥。表1给出了本次研究中各生长指标所采用的样本数量及数据来源。
注:△,验证数据区;●,建模数据区。
表1 数据来源与样本数量
1.2 研究方法
通过查阅国内外大量有关水稻生长特征的文献,收集其叶面积指数和地上干物质积累量变化过程的相关数据,同时通过中国气象数据网,收集温度数据,计算各地区不同年份水稻生育期的有效积温,进而分析水稻各生长指标随有效积温变化的特征。选择相关数据建立适用于不同地区的普适生长模型,同时建立水稻最大叶面积指数和最大干物质积累量之间的函数关系。采用湖南长沙、湖北荆州、浙江杭州、北京海淀、江苏扬州、广西南宁6个地区的试验数据对所建叶面积指数生长模型进行验证,利用辽宁大洼、四川温江、湖北武汉、江苏赣榆、福建尤溪、广东江门6个地区的试验数据验证地上干物质积累量的生长模型。由于数据量过大,本研究选择不同时间、有代表性且种植水稻较为普遍的地区的试验数据来绘制各生长指标与有效积温之间的关系曲线,研究其统一变化规律。此外,收集水稻叶面积指数、收获指数以及降水量的数据,将最大叶面积指数的取值范围以3~4、>4~5、>5~6、>6~7、>7~8、>8~9、>9~10、>10~11共8个区间进行划分,并对每个区间的最大叶面积指数及对应的收获指数求取平均值,建立二者之间的函数关系。将降水量的范围以200~300、>300~400、>400~500、>500~600、>600~700、>700~800、>800~900、>900~1 000、>1 000~1 100 mm 9个区间进行划分,并对每个区间的降水量及对应的最大叶面积指数求取平均值,建立二者之间的函数关系。
1.3 有效积温计算公式和Logistic模型
每种作物都有其生物学上、下限温度,超过这个温度范围,作物便停止生长[98]。水稻的生物学上限温度为40 ℃,下限温度为10 ℃[99]。有效积温是指日平均气温与作物活动所需要的最低温度之差:
式中GDD为有效积温,℃;avg为日平均气温,℃;base为作物活动所需要的最低温度,℃。
式中T为日最高气温,℃;T为日最低气温,℃;upper为作物活动所需要的最高温度,℃。
分别采用以GDD作为自变量的Logistic模型(式(4))和修正的Logistic模型(式(3))分析不同地区叶面积指数和干物质积累量的变化过程,具体公式如下所示:
式中LAI为叶面积指数,LAImax为叶面积指数理论最大值;DMA为作物干物质积累量,kg/hm2;DMAmax为干物质积累量理论最大值(dry matter accumulation maximum),kg/hm2;01201均为参数。在试验过程中存在一定的测量误差,因此各项指标的实测最大值可能并不是真实的最大值,本研究将赋予各实测最大值一定的增量,根据实测最大值来拟合理论最大值。
1.4 数据处理及误差分析
所收集的数据均采用Excel 2016进行处理;用MATLAB 2016进行模型参数推求;并利用2、均方根误差(root mean square error,RMSE)、相对误差(relative error,RE)等指标进行误差分析;利用SPSS 22.0进行方差分析。
2 结果与分析
2.1 水稻叶面积指数变化特征
叶面积指数是反映作物群体状况的重要生长指标。采用774组数据进行分析,并以东北地区为例,水稻叶面积指数随着有效积温变化的曲线如图2所示。水稻叶面积指数随有效积温变化的规律性很强,其增减趋势基本保持一致。当有效积温在300~700 ℃之间时,水稻处于拔节期,此时叶面积指数快速增长;当有效积温在700~1 000 ℃之间时,水稻处于幼穗分化至孕穗期,此阶段水稻所吸收的能量同时供给营养生长和生殖生长,叶片生长所需能量较少,因此叶面积指数增长速率变缓;当有效积温在1 000 ℃左右时,水稻开始孕穗,叶片基本停止生长,此时水稻叶面积指数达到最大值,之后叶片开始凋萎,叶面积指数逐渐下降。
图2 水稻叶面积指数随有效积温的变化(以东北地区为例)
尽管水稻叶面积指数随有效积温变化趋势基本一致,但各地区的LAI值存在显著差异。为了分析其内在机制,采用相对叶面积指数以分析其共有增长特征,图3为相对叶面积指数与有效积温之间的关系图。采用修正的Logistic模型对水稻相对叶面积指数进行拟合:
注:相对叶面积指数为水稻生长至某一生育期时的叶面积指数与全生育期最大叶面积指数的比值。下同。
Note: RLAI is ratio of LAI when the rice grows to a certain growth period and the maximum LAI of the whole growth period. Same as below.
图3 不同地区水稻相对叶面积指数(RLAI)随有效积温的变化曲线
Fig.3 Variation of rice relative leaf area index (RLAI) with GDD in different regions
相对叶面积指数Logistic模型拟合较好(2>0.80),0分别为3.79和8.36,1分别为−0.012和−0.010,2分别为6×10-6和1×10-5(表2)。采用其他6个地区的试验数据对所得模型进行验证,验证结果如图4所示,水稻叶面积指数平均曲线的模拟值与实测值之间有较好的吻合度,平均曲线、上包络线和下包络线的2分别为0.96、0.35、0.41,RMSE分别为0.06、0.19、0.22,RE分别为0.61%、7.09%、9.01%,综上,平均曲线的拟合结果最好,因此采用平均曲线作为水稻叶面积指数的模拟模型。
表2 相对叶面积指数平均曲线与包络线的Logistic系数数值
注:R2是决定系数;RE是相对误差;RMSE是均方根误差;下同。
2.2 水稻地上干物质积累量变化特征
采用473组数据分析了水稻地上干物质积累量随着有效积温变化特性,不同区域变化趋势一致,以华中地区为例(如图5所示)。各地区干物质积累过程整体均随有效积温的增大呈现上升趋势,就某个地区干物质积累量的变化特征而言,有效积温<700 ℃时,主要是水稻株高和叶片生长,水稻干物质积累较慢;当有效积温1 000~1 200 ℃之间时,水稻处于孕穗期至抽穗期,水稻同时进行营养生长与生殖生长,即株高、叶片和果实同时生长,因此干物质积累较快;有效积温在1 200~1 500 ℃之间时,此时叶面积达到最大值,水稻处于齐穗期到乳熟期,主要进行生殖生长,水稻穗粒迅速生长饱满,干物质仍然快速增长,但增长速度小于孕穗期,此阶段温度对水稻的生殖生长起主导作用,光合作用差、温度过低或过高都可能影响水稻受精,导致水稻减产[100];积温到达1 500 ℃之后,干物质积累速率明显减小,当GDD升高至2 000 ℃左右时,干物质积累量达到最大值,此时对应水稻的成熟期。
图5 水稻干物质积累量随有效积温的变化(以华中地区为例)
计算相对干物质积累量与有效积温间关系,如图6所示。采用Logistic模型对图6中水稻相对干物质积累量随有效积温变化过程进行拟合,结果如下:
式中RDMA为水稻相对干物质积累量;DMAmax为地上干物质积累量的最大值,kg/hm2。
注:RDMA为水稻生长至某一生育期时的干物质积累量与全生育期最大干物质积累量的比值。下同。
Note: RDMA is ratio of DMA when the rice grows to a certain growth period and the maximum DMA of the whole growth period. Same as below.
图6 不同地区水稻相对干物质积累量的模拟结果
Fig.6 Comparison between measured data and fitting curve of rice relative dry matter accumulation (RDMA)
表3给出了相对地上干物质积累量的上下包络线的拟合参数值,可以看出,上下包络线与外边缘点的拟合程度较好,2均大于0.90,0分别为2.800和3.718,1分别为-3.744×10-3和-2.953×10-3。采用其他6个地区的试验数据对所得模型进行验证,验证结果如图7所示,可以看出,干物质积累量的模拟值与实测值之间有较好的吻合度,其中平均曲线、上包络线和下包络线的2分别为0.96、0.74、0.49,RMSE分别为0.06、0.19、0.20,RE分别为1.02%、7.54%、10.04%。平均曲线的拟合结果最佳,可以反映大部分地区的生长状况。
利用平均曲线来分析水稻干物质积累量与有效积温间相对变化率,对式(6)求一阶导函数,并令其有效积温分别等于200、700、1 000、1 500、2 000 ℃,得到不同有效积温对应的曲线斜率分别为2×10-4、6×10-4、8×10-4、4×10-4、1×10-4,可知有效积温处于1 000 ℃左右时水稻干物质积累增长速率最大,与从曲线图中得到的结论一致。
表3 相对干物质积累量平均曲线与包络线的Logistic系数
图7 水稻相对干物质积累量模型验证图
令
2.3 水稻最大叶面积指数与最大干物质积累量的定量关系
叶片的大小可以反映植株的生长状况,因此在很大程度上决定着干物质积累量的大小。收集了30个地点220组水稻最大叶面积指数与最大干物质积累量的数据来探究两者之间的关系,如图8所示。随着最大叶面积指数的增大,水稻的最大干物质积累也逐渐增大,二者之间呈现出线性函数关系。
图8 水稻最大干物质积累量(DMAmax)与最大叶面积指数(LAImax)的拟合曲线
该函数的拟合效果较好,2为0.74。水稻处于孕穗期时,叶面积指数达到最大值,因此可以根据此时的叶面积指数值来预测最终干物质积累量的大小,而干物质积累量在一定程度上可以反映产量状况,则图8中公式可以起到初步预测产量的作用。
2.4 水稻最大叶面积指数与收获指数间定量关系
收获指数是指作物收获时的经济产量与生物产量之比,反映了作物群体光合同化产物转化为经济产品的能力。叶片是光合作用的主要器官,叶面积指数在极大程度上决定着产量的高低,不同水稻品种各生育时期的叶面积指数都与产量有一定的相关性[101-102]。以收集的30个地区220组水稻叶面积指数和收获指数的数据,分析两者之间的关系,如图9所示。
图9 水稻收获指数(HI)与LAImax的拟合曲线
从图9中可以看出,随着最大叶面积指数的增大,收获指数也逐渐增大,当叶面积指数增大到一定范围内时,收获指数开始减小,说明在一定范围内,叶面积指数越大,植株各器官分配的营养物质越合理,相应的产量也越大,而超过这个范围之后,叶面积指数过大,叶片吸收过多营养物质,从而造成产量下降的现象,这与郑俊官等[103]的研究结果一致。
水稻最大叶面积指数与收获指数的之间的关系可以采用二次多项式函数来描述,如图9所示。该函数关系的拟合效果较好,2为0.94。对所得的函数关系式求一阶导函数,并令该导函数等于0,得到当最大叶面积指数达到8,水稻的收获指数最大为0.50,籽粒产量最大,说明水稻全生育期的最大叶面积指数应控制在8左右,以获取较高产量。
2.5 水稻最大叶面积指数与全生育期内降水量的定量关系
耗水量指作物全生育期所消耗的水量,是作物生理指标的一个主要影响因素,适宜的土壤含水率和空气湿度可以促进作物叶片及植株生长。中国水稻的种植地区多分布在南方,其生育期内降雨多,降雨量一般可以满足水稻的需水量,因此灌溉较少[104]。由于现有水稻的耗水量数据不够充分,不具有代表性,本次研究采用降水量进行统计,建立水稻最大叶面积指数与全生育期降水量之间的关系。为了分析降水量与水稻生长间关系,本研究收集了30个地区220组水稻最大叶面积指数和对应的全生育期总降水量数据,计算了全生育期降水量与最大叶面积指数之间的关系,如图10所示。从图中可以看出,随着降水量的增大,叶面积指数呈现出先增大后减小的趋势。水稻属于喜湿作物,一定范围内,随着降雨量的增大,水稻的植株蒸腾和棵间蒸发作用增强,可以促进水稻的良好生长。但降水量过大时,则可能导致水稻根系土壤结构变差,团聚体严重减少,通气状况不良,过大的土壤含水量还可能影响作物根系的呼吸作用,造成根系无氧呼吸,不利于水稻正常生长,甚至造成减产。大量研究表明,作物生长过程中,适当的水分亏缺能够达到增产的作用[105-106]。
水稻最大叶面积指数与全生育期降水量的关系可以采用二次多项式函数来描述,如图10所示。该函数关系拟合效果较好,2为0.95。对上式求一阶导函数并令该导函数等于0,可得当总降水量为670.50 mm时,叶面积指数达到最大值7.93,对应的收获指数基本接近最大值0.50。因此,当降雨量大于670.50 mm时,应及时采取适当的措施排出水稻田中过多的水分,以保证水稻的正常生长。
图10 水稻最大叶面积指数与全生育期降水量(W)的拟合曲线
综上,水稻叶面积指数以及干物质积累量与有效积温之间存在良好关系,最大叶面积指数和最大干物质积累量之间具有线性关系,而且收获指数与叶面积指数有关,叶面积指数与降水量也存在显著函数关系,这样构成了通过降水量和有效积温,综合分析水稻主要生长特征的定量模型,如式(8)所示,其中包括产量预测模型和过程调控模型。通过降水量,可以预测出水稻的最大叶面积指数,进而预测其收获指数;给出相应生育时期的有效积温后,可以预测叶面积指数和地上干物质积累量的变化过程,进一步将收获指数和干物质积累量相乘,可以获得水稻的最终产量。根据年际间的温度变化情况,结合水稻生育期所需的有效积温,可以确定适宜的移栽时间,水稻生长过程中某一阶段的生长指标也可以通过有效积温进行预测,若实际测量出的叶面积指数或干物质积累量与预测值偏差过大,则可根据气候状况,从补充灌溉、排除渍水、追施肥料等方面入手进行调控,由此形成了过程调控模型。
式中为水稻产量,kg/hm2。
3 讨 论
本研究在分析了全国63个不同地区的水稻叶面积指数和干物质累积量的变化特征的基础上,将水稻的各生长指标进行归一化处理,利用相对叶面积指数和相对地上干物质积累量来描述水稻的生长特征,采用修正的Logistic模型和有效积温拟合出上下包络线并给出模型参数范围,建立了适用于中国大部分地区的水稻生长普适模型。目前国际上发展较为成熟的作物模型包括AquaCrop[107],DSSAT[93],APSIM[108],WOFOST[109]等,它们对于研究田间作物在不同气候条件、灌溉措施、施肥措施、田间管理下的生长状况以及产量预测方面具有重要的作用,但是它们在作物生长模拟过程中需要较多的参数,不同地区、气候条件下需要率定不同的参数值,使得模型的使用相对复杂。国内不少学者利用试验数据建立了模拟水稻生长的多项式[8]、Logistic及Richards[9]模型,但大都是利用生育期天数来建立的模型,不能反映温度对于水稻生长的影响,且受地域与种植时间的限制,模型不能广泛应用。本研究基于大量数据建立了适用于中国东北、长江中下游以及华南、云贵等地区的普适模型,模型评估结果显示2均大于0.95,拟合效果较好。该普适生长模型具有参数少,形式简单,便于运用的优点,在不同地区具有很大的推广应用前景,对于确定不同地区水稻的适宜播期,把握水稻生长态势,准确预测产量,提高作物生产力具有十分重要的作用。
本研究利用不同地区、不同年份水稻全生育期降水量的数据,建立了降水量与水稻最大叶面积指数的关系。由于目前收集的文献中同时提供水稻生长指标数据和耗水量或灌水量的数据过少,不能直接采用耗水量或灌溉量与作物生长指标建立关系。刘钰等研究表明[110],东北、长江中下游以及华南等地区作物对灌溉的需求量相对较低,其平均灌溉指数均小于0.5,而本次研究采集到的数据大都来源于这些地区,仅有一小部分来自华北地区(北京),因此考虑采用降水量进行初步的分析。此外,不同品种的水稻在某一相同的生育阶段其株高、叶面积指数、干物质积累量等大小均有所不同,但由于每个品种下的数据过少,分别建立模型不具有代表性,考虑到各品种水稻的生长发育过程都是相似的,因此针对叶面积指数和干物质积累量进行了归一化处理。通过对每组试验数据相对化处理,并且与气候条件结合,利用有效积温和降水量进行建模,以此来消除不同地区气候条件差异对作物生长特征的影响,但由于品种、灌溉、施肥、种植密度和土壤等因素的不同,从而导致仍然存在某些相对值偏高或偏低的情况(图3和图6)。因此,进一步的研究应针对上、下包络线附近的数据,结合不同土壤条件、水稻品种以及具体耕作措施来建立水稻生长指标与这些因素之间的内在联系,同时扩大数据量,扩展数据收集地区,注重机理研究,以提高作物产量的预测精度,为增产增收、提高农业生产效率提供有效预测分析方法。
4 结 论
本文研究了水稻相对叶面积指数和相对地上干物质积累量随着有效积温的变化规律,并分析了最大叶面积指数与最大干物质积累量之间的关系,以及最大叶面积指数对于水稻收获指数的影响和总降水量对最大叶面积指数的影响,得出如下结论:
1)随着有效积温的增大,不同地区水稻叶面积指数变化趋势基本一致,表现为先增大后减小的变化规律。当有效积温增加至1 000 ℃左右时,叶面积指数达到最大值,且叶面积指数与有效积温之间的变化规律可以很好地用Logistic模型来拟合。
2)不同地区水稻干物质积累量的增长速率呈现出“前期慢、中期快、后期慢”的变化特征,其变化过程同样可以用Logistic模型拟合,且拟合精度较好,决定系数较高。当有效积温在1 000 ℃左右时,水稻处于孕穗期,干物质积累的增长速率达到最大值。
3)水稻最大干物质积累量与最大叶面积指数之间呈现出明显的线性关系,随着最大叶面积指数的增大,最大干物质积累量也逐渐增大。
4)水稻收获指数随着最大叶面积指数的变化,呈现出明显的先增后减的二次多项式关系。当最大叶面积指数为8时,收获指数达到最大值0.50,最大叶面积指数继续增加,收获指数则会逐渐减小。水稻最大叶面积指数随全生育期降水量表现为先增加后减小的变化特征。当降水量为670.5 mm左右时,叶面积指数达到最大值7.93,且该值所对应的收获指数接近最大值0.50。
[1]国家统计局. 2013年中国统计年鉴[M]. 北京:中国统计出版社,2013.
[2]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218(4571): 443-448.
[3]姜晓剑,汤亮,刘小军,等. 中国主要稻作区水稻生产气候资源的时空特征[J]. 农业工程学报,2011,27(7):238-245.
Jiang Xiaojian, Tang Liang, Liu Xiaojun, et al. Spatial and temporal characteristics of rice production climatic resources in main growing regions of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 238-245. (in Chinese with English abstract)
[4]王信理. 在作物干物质积累的动态模拟中如何合理运用Logistic方程[J]. 中国农业气象,1986(1):14-19.
Wang Xinli. How to apply logistic equation reasonably in dynamic simulation of crop dry matter accumulation[J]. Chinese Journal of Agrometeorology, 1986(1):14-19. (in Chinese with English abstract)
[5]林瑞余,梁义元,蔡碧琼. 不同水稻产量形成过程的干物质积累与分配特征[J]. 中国农学通报,2006,22(2):185-190.
Lin Ruiyu, Liang Yiyuan, Cai Biqiong. Characteristics of dry matter accumulation and partitioning in the process of yield formation in different rice cultivars[J]. Chinese Agricultural Science Bulletin, 2006, 22(2):185-190. (in Chinese with English abstract)
[6]李艳大,汤亮,李青春. 水稻地上部干物质积累动态的定量模拟[J]. 应用生态学报,2010,21(6):1504-1510.
Li Yanda, Tang Liang, Li Qingchun. Dry matter accumulation in rice aboveground part: Quantitative simulation[J]. Chinese Journal of Applied Ecology, 2010, 21(6):1504-1510. (in Chinese with English abstract)
[7]Anandhi A. Growing degree days: Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas[J]. Ecological Indicators, 2016, 61:149-158.
[8]Van W J, Kersebaum K C, Peng S, et al. Estimating crop yield potential at regional to national scales[J]. Field Crops Research, 2013, 143(1):34-43.
[9]王卫,陈安磊,谢小立,等. 双季超级稻的生长与光合特性研究[J]. 长江流域资源与环境,2011,20(5):635-640.
Wang Wei, Chen Anlei, Xie Xiaoli, et al. Growth and photosynthetic characteristics of early and late super hybrid rice[J]. Resources and Environment in the Yangtze Basin, 2011, 20(5): 635-640. (in Chinese with English abstract)
[10]傅志强,刘依依,谢天洋,等. 水氮组合模式对双季稻生长和产量的影响[J]. 中国农学通报,2015,31(12):84-91.
Fu Zhiqiang, Liu Yiyi, Xie Tianyang, et al. Effects of water and nitrogenous fertilizer coupling modes on double season rice growth and yield[J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 84-91. (in Chinese with English abstract)
[11]王卫,谢小立,谢永宏,等. 不同施肥制度对双季稻氮吸收、净光合速率及产量的影响[J]. 植物营养与肥料学报,2010(3):752-757.
Wang Wei, Xie Xiaoli, Xie Yonghong, et al. Effects of different fertilization on nitrogen uptake, net photosynthesis rate and yield of rice[J]. Plant Nutrition and Fertilizer Science, 2010(3): 752-757. (in Chinese with English abstract)
[12]徐一兰,刘唐兴,付爱斌,等. 不同土壤耕作模式对双季稻植株生物学特性的影响[J]. 广东农业科学,2018,45(1):1-8.
Xu Yilan, Liu Tangxing, Fu Aibin, et al. Effects of different soil tillage practices on biological characteristics and grain yield of rice in double cropping rice field[J]. Guangdong Agricultural Sciences, 2018, 45(1): 1-8. (in Chinese with English abstract)
[13]Zhou H, Zhu W, Yang W, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages[J]. Ecotoxicology and Environmental Safety, 2018, 152:91-97.
[14]Zhang X, Yu H, Li F, et al. Behaviors of heavy metal(loid)s in a cocontaminated alkaline paddy soil througho-ut the growth period of rice[J]. Science of the Total Environment, 2019. https://doi.org/10.1016/j.scitotenv.2019.136204
[15]曹秀霞,安开忠,蔡伟,等. CERES Rice模型在江汉平原的验证与适应性评价[J]. 中国农业气象,2013,34(4):447-454.
Cao Xiuxia, An Kaizhong, Cai Wei, et al. Validation and adaptability evaluation of CERES-Rice model in the Jianghan Plain[J]. Chinese Journal of Agrometeorology, 2013, 34(4): 447-454. (in Chinese with English abstract)
[16]潘圣刚,黄胜奇,张帆,等. 超高产栽培杂交中籼稻的生长发育特性[J]. 作物学报,2011,37(3):537-544.
Pan Shenggang, Huang Shengqi, Zhang Fan, et al. Growth and development characteristics of super-high-yielding mid-season indica hybrid rice[J]. Acta Agronomica Sinica, 2011, 37(3): 537-544. (in Chinese with English abstract)
[17]Ling X, Zhang T, Deng N, et al. Modelling rice growth and grain yield in rice ratooning production system[J]. Field Crops Research, 2019, 241: 107574. https://doi.org/10.1016/j.fcr.2019.107574.
[18]吴文革,张洪城,钱银飞,等. 超级杂交中籼水稻物质生产特性分析[J]. 中国水稻科学,2007,21(3):287-293.
Wu Wenge, Zhang Hongcheng, Qian Yinfei, et al. Analysis on dry matter production characteristics of middle-season indica super hybrid rice[J]. Chinese Journal of Rice Science, 2007, 21(3): 287-293. (in Chinese with English abstract)
[19]徐英,周明耀,薛亚锋. 水稻叶面积指数和产量的空间变异性及关系研究[J]. 农业工程学报,2006,22(5):10-14.
Xu Ying, Zhou Mingyao, Xue Yafeng. Spatial variability and relationships of rice leaf area index and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5):10-14. (in Chinese with English abstract)
[20]沙依然·外力,李秉柏,张佳华,等. 水稻模拟模型在高温敏感性研究中的应用[J]. 植物生态学报,2014(5):515-528.
Sayran·Waley, Li Bingbai, Zhang Jiahua, et al. Application of a rice simulation model in high temperature sensitivity study[J]. Chinese Journal of Plant Ecology, 2014(5):515-528. (in Chinese with English abstract)
[21]杨建昌,杜永,吴长付,等. 超高产粳型水稻生长发育特性的研究[J]. 中国农业科学,2006,39(7):1336-1345.
Yang Jianchang, Du Yong, Wu Changfu, et al. Growth and development characteristics of super-high-yielding mid-season japonica rice[J]. Scientia Agricultura Sinica, 2006, 39(7): 1336-1345. (in Chinese with English abstract)
[22]Ata-Ul-Karim S T, Zhu Y, Yao X, et al. Determination of critical nitrogen dilution curve based on leaf area index in rice[J]. Field Crops Research, 2014, 167: 76-85.
[23]陈建卫. 秸秆还田对机插水稻群体特征及产量构成的影响[J]. 农业装备技术,2011,37(6):53-54.
Chen Jianwei. Effect of straw returning to field on population characteristics and yield composition of mechanically inserted rice[J]. Agricultural Equipment and Technology, 2011, 37(6): 53-54. (in Chinese with English abstract)
[24]周明耀,赵瑞龙,顾玉芬,等. 水肥耦合对水稻地上部分生长与生理性状的影响[J]. 农业工程学报,2006,22(8):38-43.
Zhou Mingyao, Zhao Ruilong, Gu Yufen, et al. Effects of water and nitrogen coupling on growth and physiological characteristics of overground part of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 38-43. (in Chinese with English abstract)
[25]苏祖芳,郭宏文,张洪程,等. 水稻叶龄进程群体叶面积与产量形成关系及其调控途径[J]. 耕作与栽培,1990(4):9-11.
Su Zufang, Guo Hongwen, Zhang Hongcheng, et al. Relationship between leaf area and yield formation of rice leaf-age process and its control[J]. Tillage and Cultivation, 1990(4): 9-11. (in Chinese with English abstract)
[26]李湘阁,何海燕,景元书,等. 水稻旱育抛秧生长发育的动态模拟模型[J]. 大气科学学报,1999,22(4):587-595.
Li Xiangge, He Haiyan, Jing Yuanshu, et al. A dynamic model for dry-land-seeding and throwing transplanting (HSTT) rice[J]. Journal of Nanjing Institute of Meteorology, 1999, 22(4): 587-595. (in Chinese with English abstract)
[27]张军,王兴龙,方书亮,等. 氮肥运筹对钵苗机插稻产量及形成的影响[J]. 中国稻米,2016,22(2):39-42.
Zhang Jun, Wang Xinglong, Fang Shuliang, et al. Effects of nitrogen application on yield and yield formation of pot-seedling mechanical transplanting rice[J]. China Rice, 2016, 22(2): 39-42. (in Chinese with English abstract)
[28]杨峰,范亚民,李建龙,等. 高光谱数据估测稻麦叶面积指数和叶绿素密度[J]. 农业工程学报,2010,26(2):237-243.
Yang Feng, Fan Yamin, Li Jianlong, et al. Estimating LAI and CCD of rice and wheat using hyperspectral remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 237-243. (in Chinese with English abstract)
[29]吉振华,顾莉娟,侍山林,等. 施肥对水稻生长动态和穗粒结构的影响分析[J]. 安徽农业科学,2007,35(27):8581-8585.
Ji Zhenhua, Gu Lijuan, Shi Shanlin, et al. Effects of fertilization on the growth dynamics and spike-grain structure in rice[J]. Journal of Anhui Agricultural Sciences, 2007, 35(27): 8581-8585. (in Chinese with English abstract)
[30]严德翼,何晓艳. 水稻肥料配方验证研究[J]. 安徽农业科学,2015(18):113-114.
Yan Deyi, He Xiaoyan. Study on verification of fertilizer formula for paddy[J]. Journal of Anhui Agricultural Sciences, 2015(18): 113-114. (in Chinese with English abstract)
[31]万辛. 水稻高产优质栽培肥料试验研究[J]. 上海农业科技,2006(5):82-84.
Wan Xin. Experimental study on high yield and high quality cultivated fertilizer of rice[J]. Shanghai Agricultural Science and Technology, 2006(5): 82-84. (in Chinese with English abstract)
[32]严克华,彭亚明,蔡晓祥. 机插水稻密度与产量关系探索[J]. 大麦与谷类科学,2009(1):19-22.
Yan Kehua, Peng Yaming, Cai Xiaoxiang. Study on the relationship between density and yield of mechanically inserted rice[J]. Barley and Cereal Sciences, 2009(1): 19-22. (in Chinese with English abstract)
[33]Zhang H, Liu H, Hou D, et al. The effect of integrative crop management on root growth and methane emission of paddy rice[J]. The Crop Journal, 2019, 7: 444-457.
[34]程乾,黄敬峰,王人潮,等. MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究[J]. 应用生态学报,2004,15(8):1363-1367.
Cheng Qian, Huang Jingfeng, Wang Renchao, et al. Correlation analysis of simulated MODIS vegetation indices and rice leaf area index and leaf chlorophyⅡ content[J]. Chinese Journal of Applied Ecology, 2004, 15(8):1363-1367. (in Chinese with English abstract)
[35]程乾. 基于MOD09产品的水稻叶面积指数和叶绿素含量的遥感估算模型[J]. 应用生态学报,2006,17(8):1453-1458.
Cheng Qian. Estimation models of rice LAI and Chlorophyll content based on MOD09[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1453-1458. (in Chinese with English abstract)
[36]陈中赟,盛琼,李洪权,等. 单季稻叶面积指数变化特征及其与气象条件的关系[J]. 中国农学通报,2018,34(1):1-5.
Chen Zhongyun, Sheng Qiong, Li Hongquan, et al. LAI of single cropping rice: The variation characteristics and its relationship with meteorological condition[J]. Chinese Agricultural Science Bulletin, 2018, 34(1): 1-5. (in Chinese with English abstract)
[37]吴增琪,林贤青,朱贵平,等. 精准生产设计与决策支持系统在中浙优1号生产上的应用[J]. 中国农学通报,2009,25(20):128-131.
Wu Zengqi, Lin Xianqing, Zhu Guiping, et al. Application of the quantitative design of a cultural pattern and decision support system in Zhongzheyou 1[J]. Chinese Agricultural Science Bulletin, 2009, 25(20): 128-131. (in Chinese with English abstract)
[38]黄云彭,曹若梅. 水稻施肥技术的研究[J]. 中国土壤与肥料,1990(2):42-45.
Huang Yunpeng, Cao Ruomei. Study on the technology of rice fertilization[J]. Soils and Fertilizers, 1990(2): 42-45. (in Chinese with English abstract)
[39]王晓燕,韦还和,张洪程,等. 水稻甬优12产量13.5 t/hm2以上超高产群体的生育特征[J]. 作物学报,2014,40(12):2149-2159.
Wang Xiaoyan, Wei Huanhe, Zhang Hongcheng, et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t/ha)[J]. Acta Agronomica Sinica, 2014, 40(12): 2149-2159. (in Chinese with English abstract)
[40]陈鸿飞,林瑞余,梁义元,等. 不同栽培模式早稻-再生稻头季干物质积累运转特性研究[J]. 中国生态农业学报,2008,16(1):129-133.
Chen Hongfei, Lin Ruiyu, Liang Yiyuan, et al. Dry matter accumulation and transportation in first rice crop of early rice-ratoon rice under different cultivation patterns[J]. Chinese Journal of Eco-Agriculture, 2008, 16(1): 129-133. (in Chinese with English abstract)
[41]李忠,陈军,林世圣,等. 氮肥运筹比例对水稻生长及产量的影响[J]. 福建农业学报,2011,26(4):557-561.
Li Zhong, Chen Jun, Lin Shisheng, et al. Effects of nitrogen application ratio on the growth and yield of rice (. L)[J]. Fujian Journal of Agricultural Sciences, 2011, 26(4): 557-561. (in Chinese with English abstract)
[42]吴端普,吴天恩. 水稻需水规律与灌溉技术试验研究[J]. 中国农村水利水电,1995(11):11-15.
Wu Duanpu, Wu Tianen. Experimental study on water demand law and irrigation technology of rice[J]. Journal of Rural Water Resources and Hydropower, 1995(11): 11-15. (in Chinese with English abstract)
[43]李端富,周天生,吴能,等. 稻田养鱼对水稻生长发育的效应试验初报[J]. 基因组学与应用生物学,1990(4):27-34.
Li Duanfu, Zhou Tiansheng, Wu Neng, et al. The primary report about the effects of pisiculture in paddy field on the growth of rice[J]. Journal of Guangxi Agricultural University, 1990(4): 27-34. (in Chinese with English abstract)
[44]韦善清,徐世宏,李如平,等. 免耕抛栽水稻源库特性研究[J]. 中国农学通报,2005,21(9):237-241.
Wei Shanqing, Xu Shihong, Li Ruping, et al. Studies on source-sink characteristics of no-tillage and cast transplanting rice[J]. Chinese Agricultural Science Bulletin, 2005, 21(9): 237-241. (in Chinese with English abstract)
[45]夏小曼,吴炫柯,龙国兰. 水稻物质生产特性研究[J]. 南方农业学报,2008,39(6):756-759.
Xia Xiaoman, Wu Xuanke, Long Guolan. Study on traits of biomass production of rice[J]. Journal of Southern Agriculture, 2008, 39(6): 756-759. (in Chinese with English abstract)
[46]薛正平,杨星卫,段项锁,等. 精准农业水稻最佳氮肥施用量研究[J]. 中国生态农业学报,2003,11(1):53-55.
Xue Zhengping, Yang Xingwei, Duan Xiangsuo, et al. The optimum application of nitrogen on rice in precision agriculture[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 53-55. (in Chinese with English abstract)
[47]吕雄杰,潘剑君,张佳宝. 水稻冠层光谱反射特征及其与叶面积指数关系研究[J]. 土壤,2004,36(6):648-653.
Lü Xiongjie, Pan Jianjun, Zhang Jiabao. Rice canopy spectral reflectance and lesf area index[J]. Soils, 2004, 36(6):648-653. (in Chinese with English abstract)
[48]Shi Z, Chang T, Chen G, et al. Dissection of mechanisms for high yield in two elite rice cultivars[J]. Field Crops Research, 2019, 241:107563. https://doi.org/10.1016/j.fcr.2019.107563.
[49]彭国照,费永成,陈林,等. ORYZA2000水稻模型在四川盆地参数本地化及验证应用[J]. 西南师范大学学报,2018,43(3):125-132.
Peng Guozhao, Fei Yongcheng, Chen Lin, et al. Parameter debug of rice growth model ORYZA2000 and its verification application in Sichuan Basin[J]. Journal of Southwest China Normal University, 2018, 43(3): 125-132. (in Chinese with English abstract)
[50]纪洪亭,冯跃华,何腾兵,等. 两个超级杂交水稻品种物质生产的特性[J]. 作物学报,2013,39(12):2238-2246.
Ji Hongting, Feng Yuehua, He Tengbing, et al. Dynamic characteristics of matter population in two super hybrid rice cultivars[J]. Acta Agronomica Sinica, 2013, 39(12): 2238-2246. (in Chinese with English abstract)
[51]张书华,余常水,王怀昕. 水稻超高产栽培专家系统应用研究[J]. 耕作与栽培,2003(6):4-6.
Zhang Shuhua, Yu Changshui, Wang Huaixin. Application of expert system for super-high-yield cultivation of rice[J]. Tillage and Cultivation, 2003(6): 4-6. (in Chinese with English abstract)
[52]高蓓,胡凝,高茂盛. 水稻ORYZA2000模型在陕西省的适应性评价[J]. 西南师范大学学报,2016,41(5):74-80.
Gao Bei, Hu Ning, Gao Maosheng. On adaptability evaluation of ORYZA2000 in Shaanxi Province[J]. Journal of Southwest China Normal University, 2016, 41(5): 74-80. (in Chinese with English abstract)
[53]吴公惠,王广荣,王有良. 水稻定向立体受光栽培研究初探[J]. 盐碱地利用,1993(2):15-19.
Wu Gonghui, Wang Guangrong, Wang Youliang. A preliminary study on the study of the three-dimensional light-receiving and cultivation[J]. Journal of Saline and Alkali Land Utilization, 1993(2): 15-19. (in Chinese with English abstract)
[54]金学泳,商文楠,曹海峰,等. 不同灌溉方式对水稻生育及产量的影响[J]. 中国农学通报,2005,21(8):121-125.
Jin Xueyong, Shang Wennan, Cao Haifeng, et al. Effects of different irrigation style on rice growing and yield[J]. Chinese Agricultural Science Bulletin, 2005, 21(8): 121-125. (in Chinese with English abstract)
[55]赵宏伟,陈宾宾,邹德堂,等. 灌溉方式和氮肥用量对水稻群体生长特性的影响[J]. 灌溉排水学报,2016(1):32-35.
Zhao Hongwei, Chen Binbin, Zou Detang, et al. Impacts of irrigation mode and nitrogen amount on population growth characteristics of rice[J]. Journal of Irrigation and Drainage, 2016(1): 32-35. (in Chinese with English abstract)
[56]聂晓,王毅勇,刘兴土. 灌溉方式对寒地水稻生长和产量构成要素的影响[J]. 灌溉排水学报,2013,32(6):34-37.
Nie Xiao, Wang Yiyong, Liu Xingtu. Effects of irrigation modes on growth and yield structures of rice in cold area[J]. Journal of Irrigation and Drainage, 2013, 32(6): 34-37. (in Chinese with English abstract)
[57]徐莹莹,阎百兴,王莉霞. 水稻露水凝结量研究[J]. 中国农业科学,2011,44(3):524-530.
Xu Yingying, Yan Baixing, Wang Lixia. A research of dewfall in paddy[J]. Scientia Agricultura Sinica, 2011, 44(3): 524-530. (in Chinese with English abstract)
[58]Fang H, Li W, Wei S, et al. Seasonal variation of leafarea index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods[J]. Agricultural and Forest Meteorology, 2014, 198/199: 126-141.
[59]张巍巍,柴永山,孙玉友,等. 水稻不同时期群体指标与产量的关系研究[J]. 中国稻米,2015(6):32-36.
Zhang Weiwei, Chai Yongshan, Sun Yuyou, et al. Research on relationships of yields and population indexes of different growth stage of rice[J]. China Rice, 2015(6): 32-36. (in Chinese with English abstract)
[60]赵凤亮,郑桂萍,刁伟伟,等. 垦鉴稻10号高产群体结构研究[J]. 中国稻米,2008(6):63-67.
Zhao Fengliang, Zheng Guiping, Diao Weiwei, et al. Study on the structure of high yield population of Kenjiandao 10[J]. China Rice, 2008(6): 63-67. (in Chinese with English abstract)
[61]沈巧梅,姜思慧,赵泽松,等. 镁钾配比对水稻产量的影响[J]. 北方水稻,2012,42(6):26-29.
Shen Qiaomei, Jiang Sihui, Zhao Zesong, et al. Effects of potassium and magnesium fertilizer on the yield of rice[J]. North Rice, 2012, 42(6): 26-29. (in Chinese with English abstract)
[62]Fang H, Zhang Y, Wei S, et al. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China[J]. Remote Sensing of Environment, 2019, 233: 111377. https://doi.org/10.1016/j.rse.2019.111377.
[63]张俊宝,潘惠文,张洪文. 不同施肥方式对水稻生长发育及产量的影响[J]. 农业科技通讯,2017(3):66-69.
Zhang Junbao, Pan Huiwen, Zhang Hongwen. Effects of different fertilization methods on growth and yield of rice[J]. Agricultural Science and Technology Newsletter, 2017(3): 66-69.
[64]马波. 氮肥运筹对寒地香稻绥粳4号产量及叶面积指数的影响[J]. 黑龙江农业科学,2017(2):48-50.
Ma Bo. Influence of nitrogen application on yield and LAI of aromatic japonica rice Suijing 4 in cold region[J]. Heilongjiang Agricultural Sciences, 2017(2): 48-50. (in Chinese with English abstract)
[65]孙国宏. 寒地粳型超级稻群体光环境研究[J]. 黑龙江农业科学,2014(5):42-44.
Sun Guohong. Study on light environment of japonica super rice in cold region[J]. Heilongjiang Agricultural Sciences, 2014(5): 42-44. (in Chinese with English abstract)
[66]胡法龙,郑桂萍,于洪明,等. 寒地水稻不同群体叶面积指数、干物质量与产量的关系[J]. 江苏农业科学,2014,42(5):93-97.
Hu Falong, Zheng Guiping, Yu Hongming, et al. Relationship between leaf area index, dry matter quality and yield of different population in cold area[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 93-97. (in Chinese with English abstract)
[67]魏永华,何双红,徐长明. 控制灌溉条件下水肥耦合对水稻叶面积指数及产量的影响[J]. 农业系统科学与综合研究,2010,26(4):500-505.
Wei Yonghua, He Shuanghong, Xu Changming. Influence of water-fertilizer coupling on rice LAI and yield under the condition of controlling irrigation[J]. System Sciences and Comprehensive Studies in Agriculture, 2010, 26(4): 500-505. (in Chinese with English abstract)
[68]郑天翔,唐湘如,罗锡文,等. 不同灌溉方式对精量穴直播超级稻生产的影响[J]. 农业工程学报,2010,26(8):52-55.
Zheng Tianxiang, Tang Xiangru, Luo Xiwen, et al. Effects of different irrigation methods on production of precision hill-direct-seeding super rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 52-55. (in Chinese with English abstract)
[69]张旭,黄秋妹,黄农荣,等. 高产早籼稻群体动态结构的差异[J]. 热带亚热带植物学报,1999(S1):22-29.
Zhang Xu, Huang Qiumei, Huang Nongrong, et al. The differents of population dynamic structure among some high-yielding indica rices[J]. Journal of Tropical and Subtropical Botany, 1999(S1): 22-29. (in Chinese with English abstract)
[70]莫钊文,黄忠林,罗锡文,等. 华南双季水稻机械种植方式的物质生产和积累特性[J]. 中国农学通报,2012,28(3):161-165.
Mo Zhaowen, Huang Zhonglin, Luo Xiwen, et al. Characteristics of matter production and accumulation under mechanical planting methods of south China double-cropping rice[J]. Chinese Agricultural Science Bulletin, 2012, 28(3): 161-165. (in Chinese with English abstract)
[71]周祖兴,卢志杰. 农用蜡在水稻上的应用试验初报[J]. 广东农业科学,1995(3):15-16.
Zhou Zuxing, Lu Zhijie. Preliminary report on the application of agricultural wax in rice[J]. Guangdong Agricultural Science, 1995(3): 15-16. (in Chinese with English abstract)
[72]林万粦. 双季稻省水高产灌溉技术[J]. 广东农业科学,1990(5):12-15.
Lin Wanlin. Water-saving and high-yielding irrigation techniques for double cropping rice [J]. Guangdong Agricultural Sciences, 1990(5): 12-15. (in Chinese with English abstract)
[73]Huang Q, Fan X, Tang S, et al. Seasonal differences in N release dynamic of controlled-released urea in paddy field and its impact on the growth of rice under double rice cropping system[J]. Soil and Tillage Research, 2019, 195, 104371. https://doi.org/10.1016/j.still.2019.104371.
[74]刘伟东,项月琴,郑兰芬,等. 高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J]. 遥感学报,2000,4(4):279-283.
Liu Weidong, Xiang Yueqin, Zheng Lanfen, et al. Relationships between rice LAI, CH.D and hyperspectra data[J]. Journal of Remote Sensing, 2000, 4(4): 279-283. (in Chinese with English abstract)
[75]贺帆. 不同氮肥水平对水稻冠层小气候和群体健康的影响[J]. 安徽农业科学,2010,38(5):2285-2287.
He Fan. Effects of N rates on canopy microclimate and community health in irrigated rice[J]. Journal of Anhui Agricultural Sciences, 2010, 38(5): 2285-2287. (in Chinese with English abstract)
[76]徐鹏,顾晓鹤,孟鲁闽,等. 洪涝胁迫的水稻叶面积指数变化及其光谱响应研究[J]. 光谱学与光谱分析,2013,33(12):3298-3302.
Xu Peng, Gu Xiaohe, Meng Lumin, et al. Change of LAI and spectral response for rice under flood and waterlogging stress[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3298-3302. (in Chinese with English abstract)
[77]马宏玮,许强,刘生祥,等. 宁夏灌区冬麦后复种水稻适宜移栽期的研究[J]. 宁夏农林科技,2003(2):19-20.
Ma Hongwei, Xu Qiang, Liu Shengxiang, et al. Study on the suitable transplanting period of the replanted rice after winter wheat in Ningxia irrigation area[J]. Ningxia Journal Agriculture and Forestry Science and Technology, 2003(2): 19-20. (in Chinese with English abstract)
[78]王成瑷,赵磊,王伯伦,等. 干旱胁迫对水稻生育性状与生理指标的影响[J]. 农学学报,2014(1):4-14.
Wang Chengyuan, Zhao Lei, Wang Bolun, et al. Effect of water stress of soil on growing characteristics and physiological index of rice ()[J]. Journal of Agriculture, 2014(1): 4-14. (in Chinese with English abstract)
[79]崔曾杰,耿艳秋,范丽丽,等. 生物菌肥对盐碱地水稻生长发育及产量的影响[J]. 东北农业科学,2013,38(5):32-35.
Cui Zengjie, Geng Yanqiu, Fan Lili, et al. Effects of bacterial manure on the growth and yield of rice growing in saline-alkali land[J]. Journal of Jilin Agricultural Sciences, 2013, 38(5): 32-35. (in Chinese with English abstract)
[80]韩焕豪,崔远来,时元智,等. SunScan冠层分析仪在水稻叶面积指数测量中的应用[J]. 灌溉排水学报,2015(8):44-48.
Han Huanhao, Cui Yuanlai, Shi Yuanzhi, et al. Application of SunScan canopy analysis system to measure leaf area index of rice[J]. Journal of Irrigation and Drainage, 2015(8): 44-48. (in Chinese with English abstract)
[81]陈小荣,肖自京,孙嘉,等. 不同产量晚稻品种分蘖期动态密度稀化下群体自动调节力的差异与生理机制[J]. 中国水稻科学,2013,27(4):405-412.
Chen Xiaorong, Xiao Zijing, Sun Jia, et al. Discrepancy and its physiological mechanism of population self regulatory ability for late rice varieties under treatment of dynamic thinning of seedings during tillering stage[J]. Chinese Journal of Rice Science, 2013, 27(4): 405-412. (in Chinese with English abstract)
[82]陈龙,史学正,徐胜祥,等. 基于水稻叶面积指数的根生物量预测模型研究[J]. 土壤,2014(5):862-868.
Chen Long, Shi Xuezheng, Xu Shengxiang, et al. Rice root biomass forecasting model based on leaf area index[J]. Soils, 2014(5): 862-868. (in Chinese with English abstract)
[83]叶会财,黄庆海,余喜初,等. 红壤稻田长期施钾肥及有机肥对水稻叶面积指数及产量构成的影响[J]. 江西农业学报,2010,22(10):6-9.
Ye Huicai, Huang Qinghai, Yu Xichu, et al. Effects of long-term application of potassium and organic fertilizer on leaf area index and yield components of rice in red soil paddy field[J]. Acta Agriculturae Jiangxi, 2010, 22(10): 6-9. (in Chinese with English abstract)
[84]柳开楼,秦江涛,张斌. 播种期对轻简栽培方式再生稻源库关系的影响[J]. 土壤,2012,44(4):686-695.
Liu Kailou, Qin Jiangtao, Zhang Bin. Effects on source-sink of ratoon rice under simplified cultivation of different seeding stages[J]. Soils, 2012, 44(4): 686-695. (in Chinese with English abstract)
[85]柳开楼,夏桂龙,李亚贞,等. 生物黑炭用量对赣东北双季稻生长和产量的影响[J]. 中国稻米,2015,21(4):91-94.
Liu Kailou, Xia Guilong, Li Yazhen, et al. Effects of different biochar fertilizer rates on early and late rice growth and yield in northeast area of Jiangxi Province[J]. China Rice, 2015, 21(4): 91-94. (in Chinese with English abstract)
[86]李珣,王素玲,李继开,等. 水稻高成穗率栽培技术推介[J]. 北方水稻,2009,39(1):52-56.
Li Xun, Wang Suling, Li Jikai, et al. Introduction to cultivation techniques of high panicle rate in rice[J]. North Rice, 2009, 39(1): 52-56. (in Chinese with English abstract)
[87]王伯伦,刘新安,王术,等. 水稻高产高效益栽培的进一步探讨:二[J]. 盐碱地利用,1995(1):1-3.
Wang Bolun, Liu Xinan, Wang Shu, et al. Further study on high yield and high benefit cultivation of rice (2)[J]. Journal of Saline and Alkali Land Utilization, 1995(1): 1-3. (in Chinese with English abstract)
[88]付立东,王宇,隋鑫,等. 氮素基蘖穗肥不同施入比例对超级稻生育及产量的影响[J]. 作物杂志,2010(5):34-38.
Fu Lidong, Wang Yu, Sui Xin, et al. Effects of different rate of nitrogen base-tiller and panicle fertilizer on development and yield of super rice[J]. Crops, 2010(5): 34-38. (in Chinese with English abstract)
[89]付立东,王宇,李旭,等. 磷肥不同施用量对水稻产量及磷肥利用率的影响[J]. 北方水稻,2011,41(4):20-24.
Fu Lidong, Wang Yu, Li Xu, et al. Effects of different phosphorus fertilizer amount on yield and utilization efficiency[J]. North Rice, 2011, 41(4): 20-24. (in Chinese with English abstract)
[90]付立东,王宇,隋鑫,等. 生物型化肥增效抗盐碱剂在水稻上的应用研究[J]. 北方水稻,2013,43(4):6-10.
Fu Lidong, Wang Yu, Sui Xin, et al. Applied research on bio-fertilizer efficiency salt resistant agent on rice[J]. North Rice, 2013, 43(4): 6-10. (in Chinese with English abstract)
[91]王铮,韩勇,李建国,等. 辽宁省粳型超级稻品种生物产量与光合特性研究[J]. 北方水稻,2010,40(6):5-8.
Wang Zheng, Han Yong, Li Jianguo, et al. Study on biomass and photosynthesis characteristics of japonica super rice varieties in Liaoning Province[J]. North Rice, 2010, 40(6): 5-8. (in Chinese with English abstract)
[92]张喜娟,李伟娟,李红娇,等. 超级稻沈农265生长发育特性及产量形成特点[J]. 华中农业大学学报,2008,27(4):445-450.
Zhang Xijuan, Li Weijuan, Li Hongjiao, et al. Growth and development characteristics and yield formation of super rice Shennong 265[J]. Journal of Huazhong Agricultural University: Natural Science Edition, 2008, 27(4): 445-450. (in Chinese with English abstract)
[93]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3): 235-265.
[94]Huang J, Hu T, Yasir M, et al. Root growth dynamics and yield responses of rice (L.) under drought-Flood abrupt alternating conditions[J]. Environmental and Experimental Botany, 2019, 157: 11-25. https://doi.org/10.1016/j.envexpbot.2018.09.018.
[95]金小实. 芒市不同移栽秧龄对机插稻产量的影响[J]. 现代农业科技,2015(9):19-20.
Jin Xiaoshi. Effect of different transplanting seedling sge on the yield of mechanical transplanting rice in Mangshi City[J]. Modern Agricultural Science and Technology, 2015(9): 19-20. (in Chinese with English abstract)
[96]刘军,余铁桥. 大穗型水稻超高产产量形成特点及物质生产分析[J]. 湖南农业大学学报,1998(1):1-7.
Liu Jun, Yu Tieqiao. Analysis of the formation of super-high yield of big panicle rice and its dry matter production[J]. Journal of Hunan Agricultural University, 1998(1): 1-7. (in Chinese with English abstract)
[97]辛阳,魏云霞,王清峰,等. 减缓施肥对水稻生长和产量形成的影响[J]. 热带作物学报,2012,33(7):1184-1187.
Xin Yang, Wei Yunxia, Wang Qingfeng, et al. Effect of reduced and delayed fertilization on growth and yield formation in rice[J]. Chinese Journal of Tropical Crops, 2012, 33(7): 1184-1187. (in Chinese with English abstract)
[98]段若溪,姜会飞. 农业气象学:修订版[M]. 北京:气象出版社,2013.
[99]陶炳炎,邹永林,汤志成. 水稻生长发育动态监测农业气象模式研究[J]. 南京气象学院学报,1992(2):82-91.
Tao Bingyan, Zou Yonglin, Tang Zhicheng. Study on agricultural models for monitoring rice growth/development dynamics[J]. Journal of Nanjing Institute of Meteorology, 1992(2): 82-91. (in Chinese with English abstract)
[100]曲辉辉,姜丽霞,王冬冬. 气候变化对黑龙江省水稻障碍型冷害的影响[J]. 生态学报,2016,36(3):769-777.
Qu Huihui, Jiang Lixia, Wang Dongdong. Influence of climate change on sterile-type cooling injury in rice in Heilongjiang Province, China[J]. Acta Ecologica Sinica, 2016, 36(3):769-777. (in Chinese with English abstract)
[101]徐英,周明耀,薛亚锋. 水稻叶面积指数和产量的空间变异性及关系研究[J]. 农业工程学报,2006,22(5):10-14.
Xu Ying, Zhou Mingyao, Xue Yafeng. Spatial variability and relationships of rice leaf area index and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 10-14. (in Chinese with English abstract)
[102]薛亚锋,周明耀,徐英,等. 水稻叶面积指数及产量信息的空间结构性分析[J]. 农业工程学报,2005,21(8):89-92.
Xue Yafeng, Zhou Mingyao, Xu Ying, et al. Spatial structure of leaf area index and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 89-92. (in Chinese with English abstract)
[103]郑俊官,高恩广,孙中泰,等. 论水稻生长发育中的几个生态平衡[J].垦殖与稻作,2004(4):31-32.
Zheng Junguan, Gao Enguang, Sun Zhongtai, et al. On several ecological balance in the growth and development of rice[J]. Reclaim and Rice Cultivation, 2004(4): 31-32. (in Chinese with English abstract)
[104]王卫光,彭世彰,孙风朝,等. 气候变化下长江中下游水稻灌溉需水量时空变化特征[J]. 水科学进展,2012,23(5):656-664.
Wang Weiguang, Peng Shizhang, Sun Fengchao, et al. Spatiotemporal variations of rice irrigation water requirements in the mid-lower reaches of Yangtze River under changing climate[J]. Advances in Water Science, 2012, 23(5): 656-664. (in Chinese with English abstract)
[105]褚光,展明飞,朱宽宇,等.干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报,2016,42(7):1026-1036.
Chu Guang, Zhan Mingfei, Zhu Kuanyu, et al. Effects of alternate wetting and drying tiirgation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract)
[106]董淑喜,徐淑琴. 水分胁迫对寒区水稻生长特性及产量的影响[J]. 灌溉排水学报,2008,27(6):64-66.
Dong Shuxi, Xu Shuqin. The influence of the different degrees in different periods of water stress on rice growth characteristic and yield in cold region[J]. Journal of Irrigation and Drainage, 2008, 27(6): 64-66. (in Chinese with English abstract)
[107]Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize[J].Agronomy Journal, 2009, 101(3): 448-459.
[108]Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[109]Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Soil Use and Management, 1989, 5(1): 16-24.
[110]刘钰,汪林,倪广恒,等. 中国主要作物灌溉需水量空间分布特征[J]. 农业工程学报,2009,25(12):6-12.
Liu Yu, Wang Lin, Ni Guangheng, et al. Spatial distribution characteristics of irrigation water requirement for main crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 6-12. (in Chinese with English abstract)
Rice growth model in China based on growing degree days
Su Lijun1, Liu Yunhe1, Wang Quanjiu1,2※
(1.,,710048,; 2.,,712100,)
Temperature determines the maturity of crops by affecting the formation of dry matter, and ultimately affects crop yield. Therefore, studying the relationship between temperature and crop growth is very important to improve agricultural production efficiency. In this study, an universal Logistic model for describing the growth process of rice was established with growing degree days as independent variable, the leaf area index and dry matter accumulation of rice as dependent variable, respectively. A large number of data of rice growth index were collected. At the same time, the relationships between the maximum leaf area index, the maximum dry matter accumulation, harvest index (the ratio of crop economic yield to total biomass) and precipitation throughout the growth period of rice were analyzed. The results showed that with the increase of growing degree days, the change of rice leaf area index revealed obvious characteristics: increase firstly then decrease, and the change trend of leaf area index in different regions was basically similar. When the growing degree days was increased to about 1 000 ℃, the leaf area index reached the maximum and this stage corresponded to the booting stage. When the growing degree days was increased to about 1 000 ℃, the increase rate of dry matter accumulation was the largest. At this time, the leaf area almost stoped growing, and the rice entered the reproductive growth stage. There was an obvious linear relationship between the maximum leaf area index and the maximum dry matter accumulation of rice. With the increase of the maximum leaf area index, the maximum dry matter accumulation increased gradually. There was a quadratic polynomial relationship between the maximum leaf area index and harvest index of rice. When the maximum leaf area index was about 8, the harvest index was the largest. The maximum leaf area index of rice increased first and then decreased with the increase of precipitation in the whole growing period. When the precipitation of the whole growing period was about 670.5 mm, the maximum leaf area index of rice increased to about 7.9. The corresponding harvest index was also almost the maximum value. If the precipitation was more than 670.5 mm, the growth of rice leaves would be inhibited, and the photosynthesis of rice leaves would be weakened, so that the function of leaves could not be brought into full play. At the same time, too much precipitation was not conducive to the growth of rice roots, resulting in yield reduction. In this study, the rice growth regulation and yield prediction model were constructed. The results showed that the growing degree days could be used to analyze the growth process of rice accurately, and it could improve the precision of rice yield prediction and efficiency agricultural production. In this study, we considered the relationsips between the meteorological factors and the crop growth, and established the universal rice growth model by using growing degree days, precipitation and the physiological index of the rice, and estalished the prediction model of the rice yield by using the harvest index. It would be a guidance of constructing growth models of other crops.
precipitaition; biomass;rice; growing degree days; crop growth index; Logistic models
苏李君,刘云鹤,王全九. 基于有效积温的中国水稻生长模型的构建[J]. 农业工程学报,2020,36(1):162-174.doi:10.11975/j.issn.1002-6819.2020.01.019 http://www.tcsae.org
Su Lijun, Liu Yunhe, Wang Quanjiu. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 162-174. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.019 http://www.tcsae.org
2019-04-16
2019-10-10
国家自然科学基金面上项目(51679190);国家自然科学基金重点项目(41830754);国家自然科学基金面上项目(51979220)
苏李君,副教授,博士后,主要从事农业水土工程和微分方程数值解研究。Email:sljun11@163.com
王全九,教授,博士生导师,主要从事农业水土资源与生态环境研究。Email:wquanjiu@163.com
10.11975/j.issn.1002-6819.2020.01.019
S511
A
1002-6819(2020)-01-0162-06