APP下载

三阶微分方程组特解的按列比较法

2020-01-08吴幼明林晓莹

惠州学院学报 2019年6期
关键词:将式三阶算例

吴幼明,林晓莹

( 佛山科学技术学院 数学与大数据学院, 广东 佛山 528000 )

求微分方程组的特解[1-8]是微分方程理论的重要内容之一,很多学者都已经研究得到大量有用的研究成果.文献[5-7] 分别给出了方程组和在的形式时的特解公式,文献[8]虽然给出了一个三阶方程 0=-′ BffA 的通解,但未对特解进行讨论.文章在文献[5-8]的基础上,采用按列比较法,给出了微分方程组当的形式时的特解公式,这是文献[5-7]的推广,亦是文献[8]的补充,因此更具有普遍性.

1 符号

给出矩阵微分方程

因此,方程(1)整理后为:

2 非齐次方程组的特解

对于矩阵微分方程(2),设

其中, ki, li, mi, ni, γi(i =1,2)是常数.

根据待定矩阵法,可设方程组(2)的1 个特解为:

将式(4)代入矩阵微分方程(2)中,整理并比较x 的同次幂系数和指数函数的系数得:

由式(5)取第i )2,1( =i 列得:

由式(6)取第i )2,1( =i 列得:

将式(9)代入式(11)中整理得:

由式(7)取第i )2,1( =i 列得:

将式(9)和式(11)代入式(13)中整理得:

由式(8)取第i )2,1( =i 列得:

将式(9)、(11)、(13)代入式(15),可得:

将所求得的O、P、Q、Z 的值代入式(4),得方程(1)的1个特解为:

3 算例

用本文方法解矩阵微分方程的特解:

则:

则矩阵微分方程(18)的1 个特解为:

经检验,式(19)是矩阵微分方程(18)的1 个特解.

4 结语

文章在二阶微分方程组研究的基础上,根据按列比较法和待定矩阵法,进一步探讨得出了一类不含二阶导数项的三阶微分方程组的特解公式,并根据算例验证了公式的正确性.文章结果也可通过编写计算机程序进行计算.

猜你喜欢

将式三阶算例
AKNS方程的三线性型及周期孤立波解
三阶非线性微分方程周期解的非退化和存在唯一性
修正Jaulent-Miodek方程组的G′/G展开和精确解
因子von Neumann代数上非线性*-Lie导子的刻画
近场脉冲地震下自复位中心支撑钢框架结构抗震性能评估
单自由度系统
降压节能调节下的主动配电网运行优化策略
提高小学低年级数学计算能力的方法
新型三阶TVD限制器性能分析
巧填三阶幻方