不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响
2019-12-19王劲松董二伟武爱莲白文斌王媛焦晓燕
王劲松,董二伟,武爱莲,白文斌,王媛,焦晓燕
不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响
王劲松1,董二伟1,武爱莲1,白文斌2,王媛1,焦晓燕1
(1山西省农业科学院农业环境与资源研究所,太原 030031;2山西省农业科学院高粱研究所,山西晋中 030600)
【】研究土壤肥力、施肥及其互作对高粱产量、品质及养分利用的影响,为不同肥力条件下高粱施肥提供理论依据。从连续6年长期定位试验的不施肥、氮磷钾配施、氮磷钾结合有机肥和秸秆还田3个处理采集土壤,分别代表低肥力(LSF)、中肥力(MSF)和高肥力(HSF),每个肥力水平设不施肥(NF)和施肥(CF)2个处理,在温室进行盆栽试验。籽粒成熟后每盆单独收获测产,测定并计算地上部及籽粒的氮磷钾养分含量、土壤氮磷钾养分依存率及氮磷钾肥养分利用效率,分析各处理对籽粒中淀粉、单宁及蛋白质含量的影响。土壤基础肥力显著影响高粱地上部生物量和籽粒产量,但施肥后LSF、MSF和HSF 3个处理具有相同的生物量和产量。土壤基础肥力对籽粒淀粉含量没有显著影响,不施肥时LSF、MSF及HSF籽粒淀粉含量为67.99%—69.33%;但施肥降低高粱籽粒淀粉含量,随土壤基础肥力的升高,影响更为明显,HSF的CF处理淀粉含量仅为60.75%,比NF处理降低了九个百分点;土壤基础肥力对直链淀粉和支链淀粉比值没有影响。不施肥时LSF籽粒单宁含量最高,达13.69 g·kg-1,MSF和HSF的籽粒单宁含量分别为10.67和10.78 g·kg-1;施肥降低了LSF和HSF处理籽粒单宁含量,降幅达30%;尽管随土壤基础肥力提升籽粒蛋白质含量增加,但不施肥处理蛋白质含量较低,为50.98—68.54 g·kg-1;施肥显著提高了籽粒蛋白质含量,施肥后LSF、MSF和HSF处理的籽粒蛋白质含量分别为108.13、118.13和117.19 g·kg-1。土壤基础肥力显著影响了土壤地力和肥料对籽粒产量贡献率,LSF、MSF和HSF肥力下施肥对产量的贡献率分别为90.2%、51.7%和8.5%。不施肥时随土壤基础肥力提升,籽粒和秸秆中氮磷钾含量增加;与对应土壤基础肥力比较,施肥提高了籽粒和秸秆中氮磷钾养分吸收量,以HSF为例籽粒和秸秆中氮的吸收量分别由319.42和481.63 mg/盆增至597.11和924.92 mg/盆,造成了养分的奢侈吸收,降低了氮磷钾的收获指数,而在LSF和MSF情况下施肥提高了氮磷钾的收获指数。施肥能使低肥力土壤获得最大产量潜力;土壤基础肥力影响籽粒产量,但对籽粒淀粉、单宁和蛋白质含量的影响远远小于施肥;低肥力不施肥籽粒淀粉和单宁含量最高,高肥力施肥明显降低籽粒淀粉和单宁含量;施肥对籽粒蛋白质含量的影响远大于土壤肥力。施肥提高低土壤肥力植株氮磷钾收获指数,降低了高肥力养分收获指数,低肥力土壤合理施肥能实现籽粒高粱产量和品质的协同提高。
高粱;土壤肥力;籽粒品质;养分吸收
0 引言
【研究意义】土壤培肥对保障作物高产稳产非常重要[1-2],但土壤肥力的提升是一个长期的过程[3];高粱((L.)Moench)是仅次于小麦、水稻、玉米和大麦的世界第五大作物,具有较强的抗旱性,广泛种植在干旱和半干旱地区[4]。酿造业和饲料业的快速发展加剧了中国高粱的需求,2011—2015年,高粱进口量从8.4万吨增至1 000万吨,对进口高粱的依存度高达60%—90%[5];为了满足需求,2018年全国高粱种植面积急剧增加,种植土壤肥力高低不一。通常认为高粱具有较强的耐瘠性,对土壤肥力响应程度相对较小[6]。明确不同地力条件下施肥对高粱产量、品质及养分利用效率的影响有助于针对不同土壤肥力进行养分管理,实现不同肥力条件下高粱生产的养分高效利用,对减少养分资源浪费具有重要的意义。【前人研究进展】在中国,土壤肥力贡献率呈现下降的趋势[7],养分管理模式影响土壤肥力[8-9],长期施用无机肥或无机肥与有机肥秸秆配施能提高土壤基础肥力[10]。通过对中国典型农田21个长期肥料试验数据分析结果表明,长期不施肥或使用化肥对玉米和小麦而言,土壤生产能力下降,但对水稻产量不明显[9]。土壤肥力水平不仅影响作物的生产潜力,也影响肥料利用效率,与高肥力土壤比较,施肥能够明显提升低肥力土壤的增产效果,提高肥料养分的利用效率[1, 11-13]。施肥也调控作物品质,增施氮提高小麦和玉米籽粒蛋白质含量[14-15],适量氮肥提高高粱籽粒的淀粉含量[16-17],施肥时期也影响小麦籽粒的硬度和蛋白的含量[18],在保证作物产量和品质情况下,降低施肥量对经济效益和生态效益具有重要意义[19]。【本研究切入点】中国高粱主要用于酿造业,籽粒中淀粉含量直接影响出酒(醋)率,单宁含量影响酿造产品的风味;中国高粱施肥管理粗放,不同土壤肥力条件、施肥及其互作对高粱籽粒产量、籽粒淀粉和单宁的影响鲜有报道。【拟解决的关键问题】本研究以2011—2016年施肥定位试验中不施肥(low soil fertility,LSF)、氮磷钾配施(medium soil fertility,MSF)、氮磷钾配施有机肥和秸秆还田(high soil fertility,HSF)形成的不同土壤肥力水平,研究不同肥力条件及其施肥对高粱籽粒产量、养分利用及籽粒品质的影响,为干旱及半干旱区不同肥力条件下获得高粱产量和品质双赢的养分管理提供依据。
1 材料与方法
1.1 供试土壤
自2011年,在山西晋中市东阳镇山西省农业科学院试验基地进行了不同施肥处理的长期定位施肥试验。供试土壤采自该定位试验处理3个不同土壤肥力水平,分别为:不施肥(LSF)、氮磷钾化肥配施(MSF)、氮磷钾化肥配施有机肥和秸秆还田(HSF);2011—2016年,MSF和HSF处理每年施入氮肥(N)225 kg·hm-2、磷肥(P2O5)75 kg·hm-2、钾肥(K2O)75 kg·hm-2,且HSF处理每年另外施入45 m3·hm-2有机肥(折合养分N 99.68 kg·hm-2、P2O555.90 kg·hm-2、K2O 69.15 kg·hm-2)、秸秆6 150 kg·hm-2(折合养分N 49.20 kg·hm-2、P2O511.27 kg·hm-2、K2O 139.16 kg·hm-2),3个肥力处理的土壤机械组成一致,土壤养分状况见表1。
表1 供试土壤的基础养分状况
LSF:低肥力;MSF:中肥力;HSF:高肥力。下同
LSF: Low soil fertility; MSF: Medium soil fertility; HSF: high soil fertility. The same as below
试验于2017年在山西省农业科学院温室进行。春季施肥前采集LSF、MSF、HSF 3个处理的耕层土壤(0—20 cm)进行盆栽,在3个肥力(处理)的基础上设不施肥(NF)和施肥(CF),共6个处理,每个处理10次重复。试验采用盆高20.0 cm,上部和底部直径分别为23.5和17.0 cm的容器进行盆栽,供试土壤风干过5 mm筛后,混合均匀,每盆装土6 kg,CF处理N、P2O5和K2O施用量分别为0.2、0.15和0.15 g·kg-1,以尿素、磷酸二氢钾和硝酸钾形式施入,3月18日播种,每盆播种20粒,出苗后22 d间苗,每盆留苗4株,出苗后39 d每盆定苗2株直至8月7日收获。生育期内试验盆栽随机排列,每3天挪动避免边际效应。
1.2 样品采集与测定
籽粒成熟后每盆单独收获测产,同时将采集的地上部植株样洗净,105℃杀青30 min后,65℃烘干至恒重测定生物量,粉碎后用于测定植株和籽粒氮磷钾养分。H2SO4消煮凯氏定氮仪测定氮含量;浓HClO4和浓HNO3按照1﹕3消煮,紫外可见分光光度计比色测定磷的含量,火焰光度计测定钾的含量[20]。粉碎的籽粒避光保存,用75%二甲基甲酰胺溶液浸提,紫外可见分光光度计比色法测定籽粒单宁含量[21],氯化钙溶液为分散剂,旋光法测定总淀粉含量[22],碘试剂显色法紫外可见分光光度计比色测定直链淀粉含量[23],用籽粒氮含量折算蛋白质含量[20]。
1.3 数据处理
采用以下公式计算相关参数[10, 24]:
土壤肥力贡献率(%)(contribution of soil fertility to yield)=不施肥处理籽粒产量(g/pot)/施肥处理籽粒产量(g/pot)×100
肥料贡献率(%)(contribution of fertilizer)=[施肥处理籽粒产量(g/pot)-不施肥处理籽粒产量(g/pot)]/施肥处理籽粒产量(g/pot)×100
籽粒养分吸收量(mg/pot)(nutrition accumulation by grain)=籽粒产量(g/pot)×1000×籽粒养分含量(%)
地上部养分总吸收量(mg/pot)(total nutrition accumulation)=籽粒产量(g/pot)×1000×籽粒养分含量(%)+秸秆产量(g/pot)×1000×秸秆养分含量(%)
氮(磷、钾)素收获指数(%)(nitrogen (phosphorus , potassium) harvest index)=籽粒吸收氮(磷、钾)量(mg/pot)/地上部吸收氮(磷、钾)量(mg/pot)×100
土壤氮(磷、钾)依存率(%)(soil nitrogen ( phosphorus、potassium) dependent rate ]=不施肥处理地上部吸氮(磷、钾)量(mg/pot)/施肥处理地上部吸收氮(磷、钾)量(mg/pot)×100
肥料回收利用率(%)(fertilizer recovery efficiency)=(施肥处理地上部养分吸收量(g/pot)-不施肥处理地上部养分吸收量(g/pot))/施肥量(g/pot)×100
氮(磷、钾)偏生产力(g·g-1)(partial factor productivity of fertilizer)=施肥处理籽粒产量(g/pot)/施氮(磷、钾)量(g/pot)
籽粒氮(磷、钾)利用效率(g·g-1)(nitrogen (phosphorus, potassium)use efficiency of grain)=籽粒产量(g/pot)/成熟期地上部氮(磷、钾)吸收量(g/pot)
用Microsoft Excel 2003作图,Minitab 15进行数据分析,方差分析差异显著时进行多重比较。
2 结果
2.1 土壤肥力及施肥对高粱地上部生物量和籽粒产量的影响
基础肥力(NF)对地上部生物量和籽粒产量有显著影响(<0.05),基础肥力生物量和籽粒产量均表现HSF>MSF>LSF:与LSF处理比较,MSF和HSF基础肥力生物量分别提高207.5%和385.9%,籽粒产量分别提高了403.4%和878.9%。施肥对不同肥力条件下高粱地上部生物量和籽粒产量具有显著的提升效应(<0.05),但施肥对3种肥力地上部生物量和产量影响不同:与NF处理比较,CF处理低肥力(LSF)的生物量和籽粒产量分别提高了387.9%和919.3%,中肥力(MSF)分别增加了98.1%和68.6%,高肥力(HSF)分别增加了8.4%和9.3%;3个肥力条件下CF处理的生物量和籽粒产量没有显著差异(>0.05)(图1)。
2.2 土壤肥力及施肥对高粱籽粒品质的影响
方差分析表明,土壤肥力和施肥对高粱籽粒淀粉含量分别有显著(<0.05)和极显著(<0.01)的影响;多重比较表明,不施肥肥力水平对淀粉含量没有显著影响,淀粉含量为69.33%—69.70%;但随肥力水平的提升,施肥降低了籽粒淀粉含量,低肥力(LSF)的CF籽粒淀粉含量为67.99%,MSF和HSF籽粒淀粉含量则分别为65.50%和60.75%;虽肥力水平和施肥对直链淀粉和支链淀粉与总淀粉的比例没有显著影响(>0.05),但提高肥力和施肥均提升了直链淀粉含量,降低了支链淀粉含量(表2)。土壤肥力和施肥及其交互效应显著影响单宁含量(<0.05);不施肥时,土壤肥力提升,单宁含量降低,LSF的NF处理籽粒单宁含量高达13.69 g·kg-1,而CF处理单宁含量仅为10.53 g·kg-1;MSF时施肥对籽粒单宁含量没有影响;高肥力时,CF降低了籽粒单宁含量,仅为LSF的NF处理单宁含量的56%(表2)。土壤肥力、施肥及其交互对籽粒蛋白质含量具显著影响(<0.01),LSF、MSF和HSF不施肥时籽粒中蛋白质含量分别为50.98、51.75和68.54 g·kg-1,对应地各肥力施肥后籽粒蛋白质含量分别增至108.13、118.13和117.19 g·kg-1(表2)。为此无论土壤肥力如何,当季施肥能提高籽粒中蛋白质含量。
LSF:低肥力;MSF:中肥力;HSF:高肥力;NF:不施肥;CF:施氮磷钾肥;不同小写字母表示不同处理间在0.05水平上差异显著。下同
表2 不同肥力条件下施肥对籽粒品质的影响
NF:不施肥;CF:施氮磷钾肥;同列数据后不同小写字母表示不同处理在0.05水平上差异显著;*和**分别表示在0.05和0.01水平上有显著影响。下同
NF: Without fertilization; CF: With fertilization. Different lowercase letters in the same column indicates significant differences at 0.05 level. * and ** mean significant differences at 0.05 and 0.01 level, respectively. The same as below
2.3 土壤肥力及施肥对肥料贡献率的影响
土壤肥力显著影响土壤本身对高粱籽粒产量的贡献和施肥对产量的贡献,LSF、MSF和HSF土壤肥力贡献率分别为9.8%、48.3%和91.5%(图2),3种肥力条件下施肥对产量的贡献有显著差异(<0.05),贡献率分别为90.2%、51.7%和8.5%,施肥对高粱产量的贡献率随土壤肥力的提高而降低。
2.4 土壤肥力及施肥对高粱养分吸收利用的影响
2.4.1 土壤肥力及施肥对氮磷钾养分吸收、收获指数的影响 土壤肥力、施肥及其交互对籽粒和地上部氮磷钾吸收量均有极显著影响(<0.01)(表3),无论施肥与否高粱籽粒及地上部氮磷钾吸收量均表现为HSF>MSF>LSF。不施肥时肥力对籽粒和地上部氮磷钾影响较大,施肥后虽然肥力对籽粒和地上部氮磷钾吸收量有显著影响,但其影响远远小于肥力的影响,籽粒和地上部氮磷钾的吸收量分别为524.87—597.11、76.43—90.04、100.13—116.60 g/盆和731.26—924.92、84.74—113.15和731.99—1167.32 g/盆。
养分收获指数表明养分在籽粒和营养器官的分配状况。土壤肥力、施肥及其交互效应极显著地影响了氮和钾的收获指数(<0.01)(表3),不施肥时土壤肥力提升,氮钾收获指数增加,LSF、MSF HSF处理氮收获指数分别为41.76%、59.63%和66.31%,LSF、MSF、HSF钾的收获指数为6.48%、11.31%和10.08%;施肥后随土壤肥力提升氮钾的收获指数均显著下降(<0.05);土壤肥力对磷的收获指数没有显著影响(>0.05),但施肥及肥力与施肥的交互效应对磷收获指数有极显著影响(<0.01);不施肥时3个肥力磷收获指数分别为74.90%、82.49%和87.05%,施肥后磷收获指数分别提升至90.14%、88.50%和79.59%,整体表现出土壤肥力过低或过量施肥均会降低氮磷钾的收获指数。
图2 土壤肥力及施肥对肥料贡献率的影响
2.4.2 土壤肥力及施肥对高粱氮磷钾利用效率的影响 图3表明随土壤肥力的提高,植株氮磷钾累积量对土壤的依懒性显著增加(<0.05),LSF植株氮磷钾含量对土壤养分的依存率分别为7.96%、11.36%和19.69%,HSF植株氮含量对土壤依存率为52.14%,而磷钾的依存率达到82.98%和88.49%。随土壤肥力的提升,氮磷钾肥料回收利用率下降,LSF、MSF和HSF的氮回收利用率分别为56.08%、54.52%和36.94%,磷回收利用率为8.36%、6.53%和2.14%,钾回收利用率为65.23%、60.81%和14.91%(图3)。土壤肥力对氮磷钾肥料偏生产力没有显著影响(>0.05)。
图4表明肥力显著影响高粱籽粒氮磷钾利用效率(<0.05)。与NF比较,CF处理降低了各肥力的籽粒氮利用效率,MSF的NF处理氮利用效率最高;与NF处理比较,LSF、MSF和HSF施肥引起氮利用效率降低18.81%、52.25%和44.68%。施肥提高了低肥力时籽粒磷和钾利用效率,但降低了MSF和HSF磷和钾利用效率(图4)。
图3 土壤肥力对高粱土壤养分依赖性、肥料回收利用率和肥料偏生产力的影响
3 讨论
3.1 土壤肥力及施肥对高粱产量的影响
土壤地力受土壤肥力、土壤物理特性及水分等因素影响[10,25],本研究采用机械组成一致的土壤进行试验,能够较好地反映土壤肥力对高粱生长的影响。土壤肥力影响作物产量,且随基础肥力提升,施肥对产量的影响降低[7-8],尽管相同施肥条件下地力影响作物产量[2,8,13,26],但本试验施肥能够保证不同肥力当季获得相同籽粒产量(图1),低肥力肥料贡献率高达90%左右(图2),这表明施肥能使瘠薄土壤获得预期高粱产量,高肥力土壤减施氮亦可获得较高产量。
表3 土壤肥力及施肥对高粱养分吸收量及养分收获指数的影响
图4 土壤肥力与施肥对籽粒氮磷钾养分利用效率的影响
3.2 土壤肥力及施肥对养分吸收吸收的影响
植物体内足够的养分是作物生长和籽粒形成的基础。无论土壤肥力高低,施肥不同程度提高了植物体内氮磷钾养分吸收(表3),施肥后土壤肥力对生物量和籽粒产量没有影响,但显著提高了籽粒和地上部养分累积;其次土壤肥力高时施肥与否对生物量和籽粒产量没有影响,但施肥提高了籽粒和地上部养分累积(图1和表3),故施肥显著提高低肥力籽粒的养分利用效率(图4);通常养分胁迫条件下籽粒养分利用效率提高[27],本研究说明根据土壤肥力合理施肥,不仅能够达到预期产量,也能提高籽粒养分利用效率。
3.3 土壤肥力及施肥对养分在籽粒中分配的影响
土壤肥力和施肥影响氮磷钾养分的吸收,并调控在籽粒中分配[28],同理本研究发现土壤肥力和施肥调控高粱养分收获指数(表3)。不施肥时随土壤肥力提高氮磷钾养分收获指数提高,既利用单位数量的氮磷钾形成更多的籽粒产量;在陕西关中小麦上表现出随施肥水平提高,养分利用效率降低[29];但本试验在中低肥力条件下施肥提高了养分收获指数,高肥力条件下施肥降低了养分收获指数,这表明养分供给过剩会阻碍养分在籽粒中的分配。
3.4 土壤肥力及施肥对高粱籽粒淀粉和单宁含量的影响
高粱籽粒淀粉含量达60%—77%[30],淀粉含量影响酿造出酒率和饲料能量的提供[31-32],蛋白质及单宁等品质性状影响酒的品质[33]。施氮能够提高小麦和水稻的总淀粉含量和调节直链淀粉/支链淀粉比例[34-35],但玉米施氮量从100 kg·hm-2增至300 kg·hm-2时淀粉含量从71.83%降至65.60%[36];水分状况影响施氮对高粱籽粒淀粉含量的调控,水胁迫时施氮提高高粱籽粒淀粉含量[37];本盆栽试验是在水分条件较好的情况下进行的,表现出无论土壤肥力高低,施肥会降低总淀粉含量,土壤肥力越高,对淀粉含量影响越大;高土壤肥力施肥,籽粒淀粉含量降低九个百分点,降幅达13%,但不施肥土壤肥力本身对淀粉含量没有显著影响,淀粉含量达69.3%—69.7%(表2);施肥影响玉米直链淀粉/支链淀粉比例[36],但本试验未发现土壤肥力和施肥影响高粱籽粒直链与支链淀粉比例。与以前研究结果一致[38],随土壤肥力的提高,籽粒蛋白质含量增加,但土壤肥力对籽粒蛋白质含量的影响远远小于施肥对其的影响,施肥后籽粒蛋白质含量几乎是同等土壤肥力不施肥处理的2倍。与施肥比较土壤养分供给(包括高肥力土壤养分供给)相对是一个缓慢的过程[38],这可能说明养分供给强度调控籽粒中碳水化合物的运转或累积。胁迫条件会抑制光合产物合成和转化,促进单宁的累积[37,40-41],施肥能够缓解水胁迫诱导的高粱单宁累积,而在水分条件适宜时施肥却抑制了单宁含量[37],本研究在土壤肥力低、不施肥胁迫下会造成单宁的过量累积,土壤肥力高且施肥降低了籽粒单宁含量。鉴于单宁与蛋白质结合会影响高粱籽粒碳水化合物的酒精转化[42],有必要土壤肥力低时通过施肥提高淀粉含量并控制单宁的累积。
4 结论
施肥能使高粱在瘠薄土壤上获得较高籽粒产量;土壤肥力对高粱籽粒淀粉含量没有影响,土壤肥力高时施肥反而会抑制籽粒淀粉形成和降低淀粉含量;养分胁迫提高单宁含量,土壤肥力高时施肥明显降低籽粒单宁含量;根据土壤肥力合理施肥可实现高粱产量和淀粉含量双高的效果。
[1] 梁涛, 廖敦秀, 陈新平, 王帅, 付登伟, 陈轩敬, 石孝均. 重庆稻田基础地力水平对水稻养分利用效率的影响. 中国农业科学, 2018, 51(16): 3106-3116.
LIANG T, LIAO D X, CHEN X P, WANG S, FU D W, CHEN X J, SHI X J. Effect of paddy inherent soil productivity on nutrient utilization efficiency of rice in Chongqing., 2018, 51(16): 3106-3116. (in Chinese)
[2] 曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894.
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities., 2012, 45(14): 2886-2894. (in Chinese)
[3] 武红亮, 王士超, 槐圣昌, 闫志浩, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年来典型黑土肥力和生产力演变特征. 植物营养与肥料学报, 2018, 24(6): 1456-1464.
WU H L, WANG S C, HUAI S C, YAN Z H, MA C B, XUE Y D, XU M G, LU C A. Evolutionary characteristics of fertility and productivity of typical black soil in recent 30 years., 2018, 24(6): 1456-1464. (in Chinese)
[4] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42: 2342-2348.
SHAN L, XU B C. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions., 2009, 42: 2342-2348. (in Chinese)
[5] 中国产业信息 2018年中国高粱价格走势、产量、进口量及进口依存度.(2018-4-10). http://www.chyxx.com/industry/201804/628455. html.
China's Industrial Information: Tends of Sorghum Price, Total Domestic Production, Import Quota and Sorghum Market Dependence on Import in 2018 of China. (2018-4-10). http://www.chyxx.com/ industry/201804/628455.html. (in Chinese)
[6] ASSEFA Y, ROOZEBOOM K, THOMPSON C, SCHLEGEL A, STONE L, LINGENFELSER J.. Waltham:Academic Press, 2013: 71-86.
[7] 徐明岗, 梁国庆, 张夫道. 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2006.
XU M G, LIANG G Q, ZHANG F D.. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[8] 鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015, 52(3): 597-606.
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system., 2015, 52(3): 597-606. (in Chinese)
[9] 李忠芳, 徐明岗, 张会民, 张文菊, 高静. 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009, 42(7): 2407-2414.
LI Z F, XU M G, ZHANG H M, ZHANG W J, GAO J. Grain yield trends of different food crops under long-term fertilization in China., 2009, 42(7): 2407-2414. (in Chinese)
[10] 廖育林, 鲁艳红, 聂军, 谢坚, 周兴, 杨曾平. 长期施肥稻田土壤基础地力和养分利用效率变化特征. 植物营养与肥料学报, 2016, 22(5): 1249-1258.
LIAO Y L, LU Y H, NIE J, XIE J, ZHOU X, YANG Z P. Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils., 2016, 22(5): 1249-1258. (in Chinese)
[11] HAEFELE S M, WOPEREIS M C S, SCHLOEBOHM A M, WIECHMANN H. Long-term fertility experiments for irrigated rice in the West African Sahel: effect on Soil Characteristics., 2004, 85: 61-77.
[12] 韩宝吉, 曾祥明, 卓光毅 , 徐芳森, 姚忠清, 肖习明, 石磊. 氮肥施用措施对湖北中稻产量、品质和氮肥利用率的影响. 中国农业科学, 2011, 44(4): 842-850.
HAN B J, ZENG X M, ZHUO G Y, XU F S, YAO Z Q, XIAO X M, SHI L. Effects of fertilization measures of nitrogen (N) on grain yield, grain quality and N-use efficiency of midseason rice in hubei province., 2011, 44(4): 842-850. (in Chinese)
[13] 王寅, 李小坤, 李雅颖, 李继福, 肖国滨, 郑伟, 袁福生, 鲁艳红, 廖育林, 鲁剑巍. 红壤不同地力条件下直播油菜对施肥的响应. 土壤学报, 2012 , 49(1): 121-129.
WANG Y, LI X K, LI Y Y, LI J F, XIAO G B, ZHENG W, YUAN F S, LU Y H, LIAO Y L, LU J W. Responses of direct-seeding rapeseed to fertilization in fields of red soil different in fertility., 2012, 49(1): 121-129. (in Chinese)
[14] 武际, 郭熙盛, 王允青, 汪建来, 杨晓虎. 氮磷配施对小麦氮磷、钾养分吸收利用及产量和品质的影响. 植物营养与肥料学报, 2007, 13(6): 1054-1061.
WU J, GUO X S, WANG Y Q, WANG J L, YANG X H. Effects of combined application of nitrogen and potassium on absorption of N and K, grain yield and quality of weak gluten wheat., 2007, 13(6): 1054-1061. (in Chinese)
[15] 辛励, 刘锦涛, 刘树堂, 陈延玲, 南镇武, 袁铭章, 陈晶培. 小麦-玉米轮作体系下长期定位秸秆还田对籽粒产量及品质的影响. 华北农学报, 2016, 31(6): 164-170.
XIN L, LIU J T, LIU S T, CHEN Y L, NAN Z W, YUAN M Z, CHEN J P. Effects of combined application of straw and organic fertilizer on grain yield and quality under wheat maize rotation system., 2016, 31(6): 164-170. (in Chinese)
[16] 曹昌林, 董良利, 宋学东, 史丽娟. 氮、磷、钾配施对高粱籽粒淀粉含量的影响. 山东农业科学, 2010(5): 68-70.
CAO C L, DONG L L, SONG X D, SHI L J. Effects of nitrogen, phosphorus and potassium on starch content in sorghum grains., 2010(5): 68-70. (in Chinese)
[17] 于泳, 黄瑞冬, 赵尚文, 将文春. 不同施氮水平对高粱籽粒淀粉累积规律的影响. 作物杂志, 2008(5): 20-23.
YU Y, HUANG R D, ZHAO S W, JIANG W C. Effect of nitrogen application on starch accumulation in sorghum grains., 2008(5): 20-23. (in Chinese)
[18] ZHONG Y X, WANG W L, HUANG X, LIU M M, HEBELSTRUP K H, YANG D L, CAI J, WANG X, ZHOU Q, CAO W X, DAI T B, JIAN D. Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ., 2019, 277: 135-144.
[19] BEILLOUIN D, TREPOS R, GAUFFRETEAU A, JEUFFROY M H. Delayed and reduced nitrogen fertilization strategies decrease nitrogen losses while still achieving high yields and high grain quality in malting barley., 2018, 101: 174-182.
[20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K.. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[21] 霍权恭, 范璐, 周展明. 高粱单宁含量的测定(GB/T 15686-2008). 中华人民共和国国家标准.
HUO Q G, FAN L, ZHOU Z M. Sorghum-Determination of tannin content (GB/T 15686-2008), State Standard of the People's Republic of China. (in Chinese)
[22] 谷物籽粒粗淀粉测定方法(GB 5006-1985), 中华人民共和国国家标准.
Determination of crude starch in cereals seeds(GB 5006-1985), State Standard of the People's Republic of China. (in Chinese)
[23] 水稻、玉米、谷子籽粒淀粉直链淀粉测定法(GB 7684-1987), 中华人民共和国国家标准.
Determination of amylase in grains of rice , maize and millet(GB 7684-1987), State Standard of the People's Republic of China(in Chinese)
[24] 黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占. 旱地不同产量水平小麦的产量构成及氮素吸收利用效率. 麦类作物学报, 2019, 39(2): 163-170.
HUANG M, WU J Z, LI Y J, WANG H Z, CHEN M C, FU G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands., 2019, 39(2): 163-170. (in Chinese)
[25] GU A J, XIE Y, GAO Y, REN X Y, CHENG C C, WANG S C. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China., 2018(637/638): 706-716.
[26] 彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018, 51(18): 3614-3624.
PENG W F, LÜ W S, HUANG S, ZENG Y J, PAN X H, SHI Q H. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil., 2018, 51(18): 3614-3624. (in Chinese)
[27] CHUAN L M, GRANT C, JIN J Y, QIU S J, ZHAO S C, LI S T, ZHOU W, XU X P. Estimating nutrient uptake requirements for wheat in China., 2013, 146: 96-104.
[28] 刘璐, 王朝辉, 刁超朋, 王森, 李莎莎. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018, 24(3): 599-608.
LIU L, WANG Z H, DIAO C P, WANG S, LI S S. Grain yield of different wheat cultivars and their relations to dry matter and NPK requirement in dryland., 2018, 24(3): 599-608. (in Chinese)
[29] 郝晓宇, 黄芳, 王峥, 张树兰, 杨学云. 陕西关中不同年代小麦品种产量及氮素吸收利用对土壤肥力的响应. 中国农业科学, 2015, 48(23): 4769-4780
HAO X Y, HUANG F, WANG Z, ZHANG S L, YANG X Y. Responses of grain yield and nitrogen use efficiency of wheat cultivars released in different decades to soil fertility in Shaanxi Guanzhong plain., 2015, 48(23): 4769-4780. (in Chinese)
[30] Kulp K, JOSEPH G, Ponte JR J G.second ed. New York: Marcel Dekker, 1991: 385-415.
[31] 张桂香, 史红梅, 李爱军. 高粱高淀粉基础材料的筛选及评价. 作物杂志, 2009(1): 97-98.
ZHANG G X, SHI H M, LI A J. Screening and evaluation of sorghum varieties with high starch content., 2009(1): 97-98. (in Chinese)
[32] EBADI M R, SEDGHI M, KAKAHKAI R M. Accurate prediction of nutritional value of sorghum grain using image analysis., 2019, 60(2): 154-160.
[33] 郭旭凯, 杨玲, 张福耀, 段冰, 郭睿, 邵强. 高粱籽粒理化特性与清香型大曲白酒酿造关系的研究, 中国酿造, 2016, 35(12): 40-43.
GUO X K, YANG L, ZHANG F Y, DUAN B, GUO R, SHAO Q. Relationship between physicochemical properties of sorghum and fen-flavor daqu baijiu fermentation., 2016, 35(12): 40-43. (in Chinese)
[34] 付雪丽, 王晨阳, 郭天财, 朱云集, 马冬云, 王永华. 水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响. 应用生态学报, 2008, 19(2): 317-322.
FU X L, WANG C Y, GUO T C, ZHU Y J, MA D Y, WANG Y H. Effects of water nitrogen interaction on the contents and components protein and starch in wheat grains., 2008, 19(2): 317-322. (in Chinese)
[35] 孙涛, 同拉嘎, 赵书宇, 王海微, 韩云飞, 张忠臣, 金正勋. 氮肥对水稻胚乳淀粉品质、相关酶活性及基因表达量的影响. 中国水稻科学, 2018 , 32(5): 475-484.
SUN T, TONG L G, ZHAO S Y, WANG H W, HAN Y F, ZHANG Z C, JIN Z Y. Effects of Nitrogen fertilizer application on starch quality, activities and gene expression., 2018, 32(5): 475-484. (in Chinese)
[36] KAPLAN M, KARAMAN K, KARDS Y M, KALE H. Phytic acid content and starch properties of maize (L.): Effects of irrigation process and nitrogen fertilizer., 2019, 283: 375-380.
[37] 王劲松, 董二伟, 武爱莲, 南江宽, 韩雄, 王立革, 丁玉川, 焦晓燕. 灌溉时期与施氮量对矮杆高粱产量和品质的影响. 灌溉排水学报, 2017, 36(增刊2): 1-8.
WANG J S, DONG E W, WU A L, NAN J K, HAN X, WANG L G, DING Y C, JIAO X Y. Effects of irrigation period and nitrogen application rate on dwarf sorghum yield and quality., 2017, 36(Suppl. 2): 1-8. (in Chinese)
[38] 熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂浆黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014 , 38(7): 767-775.
XIONG S P, WANG J, WANG X C, DING S J, MA X M. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region., 2014, 38(7): 767-775. (in Chinese)
[39] ALI B, SHAH G A, TRAORE B, SHAH S A A, AL-SOLAIMANI S G M, HUSSAIN Q, ALI N, SHAHZAD K, SHAHZAD T, AHMAD A, MUHAMMAD S, SHAH G M, ARSHAD M, HUSSAIN R A, SHAH J A, ANWAR A, AMJID M W, RASHID M I. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity., 2019, 241: 468-478.
[40] 张利华, 林益明, 叶富功, 邵宏波. 环境因素对植物单宁形成的影响. 鲁东大学学报(自然科学版), 2010, 26(4): 366-372.
Zhang L H, Li Y m, Ye F G, Shao H B. The relationship between vegetable tannins production and environmental factors., 2010, 26(4): 366- 372. (in Chinese)
[41] HALL A B, BLUM U, FITES R C. Stress modification of allelopathy ofL. debris on seed germination., 1982, 69(5): 776-783.
[42] RAMÍREZ M B, FERRARI M D, LAREO C. Fuel ethanol production from commercial grain sorghum cultivars with different tannin content., 2016, 69: 125-131.
Responses of Fertilization on Sorghum Grain Yield, Quality and Nutrient utilization to Soil Fertility
WANG JinSong1, DONG ErWei1, WU AiLian1, BAI WenBin2, WANG Yuan1, JIAO XiaoYan1
(1Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031;2Institute of Sorghum, Shanxi Academy of Agricultural Sciences, Jinzhong 030600, Shanxi)
Responses of sorghum grain yield , quality and NPK utilization to inherent soil fertility, and their interaction were explored to provide theoretical basis for best nutrient management according to soil fertility.Pot experiment was conducted in greenhouse. Soil was collected from three treatments of long-term fertilizer application experiment for 6 years, which were without fertilizer, NPK application and NPK application along with animal manure and straw returning to field, respectively. They were termed as low soil fertility (LSF), medium soil fertility (MSF) and high soil fertility (HSF), correspondingly. For each soil fertility, there were two treatments for pot experiment: without fertilizer (NF) and fertilizer application (CF). Plant and grain of sorghum were harvested after maturity. NPK accumulation in plant above ground and grain were calculated according to NPK concentration and biomass of each part of plant. The contents of starch, tannic and protein of grain were determined.For LSF, MSF and HSF, a similar biomass and yield were gained if fertilizer was applied. They were significantly affected by inherent soil fertility if fertilizer was withdrawn. Soil fertility did not affect starch content of grain, which was 67.99%-69.33%, if fertilizer was not applied. However, HSF combined with fertilizer application resulted in 60.75% starch content in grain. For all treatments, the highest of tannin content was observed in grain of LSF without fertilizer. Fertilizer application significantly decreased tannin content of grain when sorghum was cultivated with LSF and HSF, only 70% of that was produced by LSF combined with NF. Protein content was promoted with the increase of inherent soil fertility, and was doubled by fertilizer application whatever soil fertility was. When fertilizer was applied, the contributions of soil fertility to yield were 90.25%, 51.75% and 8.5% for LSF, MSF and HSF, respectively. NPK accumulation of both grain and plant aboveground was regulated by inherent soil fertility. Fertilizer enhanced NPK absorption for all soil fertility treatments. For example, N accumulation in grain and plant, induced by fertilizer application, were 1.8 and 1.9 times of those when fertilizer was withdrawn under conditions of HSL. NPK harvest indices were enhanced by fertilizer application if soil fertility was either low or medium; whereas diminished NPK harvest indices were noticed with high soil fertility.The potential sorghum grain yield can be gained for low soil fertility by means of fertilizer application. Without fertilizer, inherent soil fertility has a significant effect on grain yield. However its impacts on content of starch, tannin and protein can be neglected. Low soil fertility, combined withdrawn fertilizer, promotes starch and tannin accumulation in grain. Fertilizer application has relative more influence on grain protein content than soil fertility does. Fertilizer application diminishes nutrient harvest index and nutrient use efficiency if inherent soil fertility is high.
sorghum; inherent soil fertility; grain quality; nutrient accumulation
10.3864/j.issn.0578-1752.2019.22.020
2019-05-31;
2019-07-01
国家现代农业产业技术体系项目(CARS-06-13.5-A20)、山西省重点研发计划重点项目(201703D211010)
王劲松,E-mail:jinsong_wang@126.com。通信作者焦晓燕,E-mail:jiaoxiaoyan@sxagri.ac.cn
(责任编辑 李莉)