通往风景园林行业的BIM之路—数字化竖向设计教育
2019-12-03瑞士彼得派切克黄邓楷
著:(瑞士)彼得·派切克 译:黄邓楷
1 数字化竖向设计和建筑信息模型
“简单地说,地形塑造就是设计。”[1]12因此,竖向设计在风景园林中扮演着至关重要的角色。尽管不是每个项目都涉及大规模的竖向设计,但景观设计师的每次设计干预都会改变地形。正如斯托姆所说:“场地规划师和景观设计师最主要的职能之一就是地形塑造。”[1]135
建筑信息模型(Building Information Modeling,简称BIM)最初是为复杂的建筑项目开发的。值得注意的是,BIM不仅仅是一个软件,也是一种方法、一个过程。BIM建造、协同和管理是BIM流程中的3个任务级别。从主要内容来看,基础设施的BIM与建筑的BIM相似,都是创造供土木、结构、环境工程师,规划师,景观设计师,建筑承包商,政府或城市机构等不同项目管理者使用的同一个完整的数据模型。由于所有规划师和工程师共同使用同一模型,因此在规划初期便可以检测出场地中潜在的设计冲突,避免到施工阶段才发现问题。基础设施的BIM目前仍不能简单地与建筑的BIM挂钩。一方面,因为基础设施建设项目通常更加多样化、涉及更大的地理区域;另一方面,基础设施建设项目已经使用Little BIM一段时间了,之所以称之为“Little”是因为只有某一学科在使用同一模型,如全球导航卫星系统(Global Navigation Satellite Systems,简称GNSS)的土方工程案例。
目前多数瑞士中、大型建筑公司都在使用GNSS技术。GNSS技术结合了土方工程的数字地面模型(Digital Terrain Model,简称DTM),提高精度的同时降低了成本。智慧造景(landscapingSMART)[2]阐述了Little BIM的工作流程,包括从数据生成及建模到GNSS机械控制土方施工现场的数据准备工作。智慧造景不涵盖数据结构和工作组织等BIM协同和管理任务,而强调以下内容。
1)精确的现状数据对GNSS机械控制的数字地面模型的构建十分必要。最好能雇请专业的测量师获取数据,因为这不是景观设计师的工作。
1 以数字地面模型为核心元素的智慧造景过程The landscapingSMART process with the DTM data model in the center
2 拉珀斯维尔应用科技大学的学生使用3D全球导航卫星系统挖掘机工作(2017年)HSR students working with a 3D GNSS excavator (2017)
2)DTM是智慧造景的核心元素(图1)。场地的DTM使正确、高效、精确的地表设计和地下设计成为可能。构建精细的数字地面模型是景观设计师的重要技能。
3)模拟地形模型也是景观设计中非常重要的工具。虽然手工模型始终在竖向设计研究中发挥重要作用,但最终必须将它们转化为数字地面模型。摄影测量软件有助于这种转化,景观设计师应该熟悉摄影测量的概念并运用相关软件。
4)基于3D机械控制(指导)系统和GNSS的挖掘机和推土机需要DTM数据来进行场地的竖向设计,这些机器保证了高精度的地表(图2)。虽然承包商负责此任务,但景观设计师需要了解构建正确的DTM的基本操作。
智慧造景不但提高了施工效率,而且Little BIM是整个基础设施BIM的一部分。
2 拉珀斯维尔应用科技大学的数字化竖向设计教育
跟欧洲(例如德国)其他院校相比,竖向设计在瑞士拉珀斯维尔应用科技大学(Hochschule für Technik Rapperswil, 简 称 HSR)的场地工程教育中更为重要。HSR的模拟竖向设计课程与美国、加拿大院校的十分相似,都需要高标准地培养学生在设计过程中使用等高线、高程点、剖面图、容量计算、地下排水等方法。在与布鲁斯 沙基教授的电邮通信中谈论到美国竖向设计教育的历史,他提到,“我知道,自“二战”以来,可能美国所有的景观设计课程都包含这些学科,可能甚至更早”[3]。美国出版的一系列有关竖向设计的书籍也证实了其重要性,例如《Grade Easy》[4]。
多年以来,“大多数与场地工程相关的计算和绘图任务都已经完全自动化了”[1]211。HSR的竖向设计教学先后采用虚拟和数字方法。通过第一学期手工控制等高线,对集水池、检查井、管道进行尺寸标注等扎实的学习(实践或学徒期间加深对测量设备的理解),HSR学生第二学期几乎都在学习数字化竖向设计(图3)。数字化竖向设计课程包括以下几方面:
1)导入测量和GIS数据;
2)点、轮廓和断线的三角测量;
3)不规则三角网络(Triangulated Irregular Network,简称TIN);
4)控制用于场地设计的点、约束线;
5)容量计算,数字化管道、集水池、检查井布局;
6)道路路线和廊道设计;
7)使用无人机技术(UAV)或智能手机进行近景摄影测量;
8)GNSS挖掘机说明。
随着建筑业的发展,数字化竖向设计因其操作简单,受到越来越多的关注。几年前,HSR利用一个对比实验证明了学生更善于使用数字化工具解决竖向设计的问题。HSR学生先后参加以不同方法解决同一典型竖向设计问题的试验。第一次试验中,学生被要求使用传统模拟的、人工计算和手绘的方法计算和绘制网球场的布置,第二次测试学生使用Civil 3D软件。结果显而易见,相较于传统方法,更多的学生选择利用数字化竖向设计方法解决问题(上述结果分享于2009年国际风景园林教育大会)。现在,软件所具备的更直观的分析计算功能使数字化竖向设计的优势更加突出。
3 数字化竖向设计(景观设计项目的一部分)可发展为风景园林的BIM项目
2018年秋季学期起,Revit(建筑业BIM体系的软件)已经被整合到第1学期CAD教学以及场地设计项目中。学生在第1学期课程中必须建造一个小型建筑的模型,如公车站、雨篷或展馆。第2学期的场地设计项目是第1年场地工程教育的核心,对于理解数字化竖向设计至关重要。学生必须在项目中应用竖向设计知识,明确建筑、落客区、道路、停车场、露台和小路的位置并对场地进行地形优化。GIS数据是现有场地(航拍图和asci栅格地形)的基础。学生们还使用Revit建造了通往山顶的楼梯(建筑、道路、停车场的开挖料)。第2学期的场地设计项目在第5学期得到了完善,学生被要求将Revit建筑模型和Civil 3D土木工程模型合并为同一个BIM模型,建筑模型包括瑞士城区典型的构筑物—带有停车库的大露台(图4)。该区域使用Revit和Civil 3D组合的BIM建造模型,以检测潜在的设计问题(集水池深度、交叉管线、坡度变化、球状根的位置等)。合成Civil 3D数据的BIM Revit模型是未来计算、模拟等操作的信息中心。
3 拉珀斯维尔应用科技大学涉及数字化竖向设计的场地设计项目(Civil 3D)HSR site design project with digital grading (Civil 3D)
4 第5学期场地设计项目中Revit和Civil 3D组合的模型A combined Civil 3D and Revit model of the HSR 5th semester site design project
2018年11月初,HSR学生首次提交的学期作业(第5学期)的结果非常乐观。相关问卷调查的评估结果也表明学生的满意度较高,且对学生的访谈也显示同样的结果。上述BIM的构建过程(Civil 3D/Revit)也在2018年春、夏季HSR为瑞士景观设计部门设置的多个继续教育课程中进行了检验。2018年6月和11月,BIM的构造过程分别在东南大学风景园林系研究生课程“景观技术前沿”和清华大学风景园林工程BIM应用工作营又进行了测试,可见该方法是有效且可靠的。
除了材料、测量、岩土工程和施工技术等传统工程课程外,竖向设计在HSR场地工程教学中是最重要的课题。作为智慧造景过程的一部分,数字化竖向设计可以促进BIM模型的建造,推进风景园林行业BIM的发展(图 5~6)。
注释:
① 本文作者对文章内容负全部责任。文章内容不代表风景园林教育工作者委员会(CELA)的官方立场,其印刷和发行不构成对可能表达的观点的认可。引用本文请说明其来自CELA会议论文。有关获得重印或复制本文的许可的信息,请通过staff@thecela.org与风景园林教育工作者委员会联系。
② 所有图片均由本文作者提供。
(编辑/刘玉霞)
1 Digital grading and BIM
‘Simply put, grading is design.’[1]12Therefore,grading plays a key role in landscape architecture.Every intervention designed by a landscape architect involves some modification of the earth’s surface, although intense grading is not necessarily part of each project.As Storm states,‘The shaping of the earth’s surface is one of the primary functions of site planners and landscape architects’[1]135.
Building Information Modeling (BIM) was originally developed for complex architectural projects.It is also important to keep in mind, BIM is a method and a process not just a software.The three levels of tasks within the BIM process are BIM construction,BIM coordination and BIM management.The main idea of BIM for Infrastructure, similar to that of BIM for Architecture, is the use of one complete data model by the different project partners.Partners which may include civil, structural and environmental engineers, planners, landscape architects, building contractors and government or city agencies.All planners and engineers use only one model and therefore can detect conflicts during the planning phase instead of on site during construction.BIM for infrastructure is not yet as clearly defined as BIM for Architecture, with infrastructure projects tending to be more diverse and spread over larger geographical areas.On the other hand, the infrastructure industry has been using Little BIM for quite a while.The term little is used when only one discipline is using the data,as is the case with GNSS earth works.
5~6 BIM Revit信息中心平台中具有Civil 3D界面(如自然石材、基床、地基等)的Revit模型。图中简易的树木模型为结构工程师提供其荷载等重要信息The Revit model with Civil 3D surfaces (natural stone, bedding, foundation, etc.) on the terrace in the BIM Revit Information Hub.The simple looking trees provide important weight information for the structural engineer
Today the majority of medium to large sized construction companies in Switzerland are using Global Navigation Satellite Systems (GNSS)technology.Combined with digital terrain models for earthwork projects, precision is increased,and costs are reduced.landscapingSMART[2]describes the Little BIM workflow starting with data generation and the modeling to preparation of data for a GNSS machine-controlled earthwork construction site.It does not cover BIM topics like data structure and work organization, which are BIM coordination and management tasks.landscapingSMART emphasizes the following:
1) In order to build a Digital Terrain Model(DTM) for GNSS controlled machines precise data of the existing conditions are necessary.It is better to hire a surveyor to acquire the data, as it is not the job of landscape architects.
然而,上述分析由于缺乏异常前后的水质化学对比分析,仍具有一定的局限性。因此建议每隔几年要对流体观测井做一次水质化验,并保存详细历史资料,以供对比分析,提高流体观测的科学内涵。
2) The DTM is the central element in landscapingSMART (Fig.1).The DTM for a proposed site enables a correct, efficient and precise surface and subsurface design.The knowledge to model a detailed DTM is an important skill for landscape architects.
3) Analog terrain models are also very important tools in landscape architecture.While hand-built models will always play an important role in grading design studies, eventually they must be transferred to digital terrain models.Photogrammetric software facilitates this transfer.Landscape architects must be familiar with the concept of photogrammetry and able to apply the software.
4) Excavators and dozers with Global Navigation Satellite Systems (GNSS) based 3D machine control (guidance) systems need the DTM data for shaping the proposed site (Fig.2).The machines guarantee high precision surfaces.Contractors are responsible for this task, but Landscape Architects need a basic understanding in order to create a correct DTM.
Not only does landscapingSMART improve the efficiency of the construction process,but Little BIM is part of the overall BIM for Infrastructure.
2 Digital grading education at Hochschule für Technik Rapperswil(HSR)
Grading is more important in the site engineering education at HSR compared to other schools in Europe, for example Germany.The curriculum for analogue grading is very similar to schools in the U.S.and Canada, where rigorous training is required in design using contour lines,spot elevations, profiles, volume calculations,subsurface drainage, etc.In an e-mail by Prof.Bruce Sharky on the topic of history of grading education in the USA he states that, ‘I do know that probably all landscape architecture programs in the USA have included these subjects in their curricula since WWII and perhaps even much earlier’[3].A whole array of books published in the USA on grading, for example Grade Easy[4], also show the importance of the topic.
Over the years, “most computational and drafting tasks associated with site engineering have become completely automated”[1]211.At HSR grading is first taught using analogue methods and then followed by digital methods.With a solid background in manipulating contour lines by hand and dimensioning catch basin/manhole/pipe in the first semester (combined with a good understanding of surveying equipment during their practical year or apprenticeship), HSR students are then exposed almost exclusively to digital grading in their second semester (Fig.3).The digital grading course includes the following aspects:
1) Import of survey and GIS data;
2) Triangulation of points, contours and break lines;
4) Point and feature line commands for site design;
5) Volume calculations, digital pipe and catch basin/manhole layouts;
6) Roadway alignment and corridor design;
7) Close Range Photogrammetry using UAV technology (drone) or smart phones;
8) GNSS excavator instructions.
One reason for the emphasis on digital grading is advancement in the construction industry, the second reason is simply that it is easier for students to use.How can we prove that students are better at solving grading problems using digital tools?A couple of years ago, an experiment using a comparative approach demonstrated the advantages of digital tools.HSR students had to take two exams in which they had to solve a typical grading problem.The first exam required calculating and drafting the placement of a tennis court in the traditional,analogue, hand-calculated and hand-drawn method.In the second exam, the students used Civil 3D.The findings were clear, more students solved the task with digital grading than with analogue.The results were presented at the 2009 Council of Educators in Landscape Architecture Conference.Today more intuitive software would likely show that results tend to be even more in favor of digital grading.
3 Digital grading as part of a site design project to become BIM in landscape architecture project
Since the 2018 fall Semester, Revit, a BIM for Architecture software, has been integrated into the first semester CAD teaching as well as in the site design project.In the first semester course,students must model a small architecture project,for example a bus stop, rain shelter, or pavilion.The site design project in the second semester is the core of the site engineering education in the first year and is very important for understanding digital grading.Here students must apply their knowledge of grading in a project.They must define and grade into a landscape the location of a building, drop off area, access road, parking spaces, terraces, and paths.GIS data is the basis for the existing site (aerial photo and asci grid terrain).The students also model a staircase leading on top of a hill (excavation material of the building, access road and parking) with Revit.In the fifth semester the site design project from the second semester is refined.Students are required to combine a Revit architecture model and the Civil 3D civil engineering model into one BIM model (Fig.4).The architecture model includes a large terrace covering a parking garage, which is a typical structure in urban Switzerland.This area is constructed using combined Revit and Civil 3D and leads to a BIM construction model for checking possible conflicts (catch basin depth,crossing pipes, grade changes, location of tree root balls etc.).The BIM Revit model, with the integrated Civil 3D data, is the information hub for further calculations, simulations, etc.
The results of the first HSR fifth semester work submitted at the beginning of November 2018 are very promising.A survey was taken by the students and the evaluations indicate a high level of satisfaction.Interviews with students show the same results.The above BIM construction workflow (Civil 3D/Revit) was also tested in several continuing education courses at HSR for Swiss Landscape Architecture of fices in spring and summer 2018.In China at SouthEast University in Nanjing the workflow was used in the Advanced Landscape Technology course as part of the SEU Landscape Architecture Master program first time in June 2018, while at Tsinghua University in Beijing it was tested as part of a “Teaching for Teachers” workshop in November 2018.Thus, the approach is valid and reliable.
Besides traditional engineering courses on materials, surveying, geotechnics, and construction techniques, grading is the most important topic in the site engineering education at HSR.Digital grading as part of the landscapingSMART process leads to a BIM construction model and is the access road to BIM in Landscape Architecture (Fig.5~6).
Notes:
① The authors are solely responsible for the content of this technical presentation.The technical presentation does not necessarily reflect the official position of the Council of Educators in Landscape Architecture (CELA),and its printing and distribution does not constitute an endorsement of views which may be expressed.Citation of this work should state that it is from a CELA conference paper.For information about securing permission to reprint or reproduce this paper, please contact CELA at staff@thecela.org.
② All images are of Peter Petschek.