APP下载

甘蓝型矮秆油菜与高秆油菜的产量与氮效率比较

2019-11-29李虹桥段秋宇刘士山杨云飞李梦颖吴永成

浙江农业学报 2019年11期
关键词:矮秆氮量利用效率

李虹桥,段秋宇,刘士山,杨云飞,李梦颖,吴永成

(四川农业大学 农学院,西南作物生理生态与耕作重点实验室/作物生理生态及栽培四川省重点实验室,四川 成都 611130)

中国是世界油菜生产大国,长江流域是中国冬油菜的主要产区,常年油菜种植面积和总产量均占全国的80%以上[1]。与普通高秆油菜相比,矮秆油菜具有耐肥耐密、抗倒伏、经济系数高三大优点;同时,具有较高的产量和收获指数。但目前应用于生产中的(半)矮秆油菜品种鲜有所闻[2-3]。因此,油菜品种选育非常重要,在要求丰产、稳产的基础上,应当选育矮秆、抗倒伏,对肥水要求不严格,适宜轻简化耕作栽培特性的(半)矮秆油菜新品种,以适应机械化耕作和经济发展的需要[4]。科学、合理、有效地施肥是油菜高产高效生产中必不可少的关键栽培措施,对提高籽粒产量和含油量、氮肥利用效率、增加经济效益有显著的作用[5-7]。有报道认为,增施氮肥可以有效提高油菜的籽粒产量,但长江中上游地区油菜氮肥利用效率较低,在保持油菜高产的前提下,提高油菜氮肥利用率也是不可忽视的问题[8-9]。油菜是需氮量较大的作物,不同品种和类型的油菜对氮素的吸收利用不尽相同[10]。目前有关施氮量对油菜产量影响的研究报道较多[11]。增加施氮量可以提高油菜主序角果的产量,氮肥施用可以提高源库的转化效率[12];在江西地区施用控释氮(150 kg·hm-2)可以有效提高油菜产量,同时提高对氮肥的利用效率和产油量[13]。Clark等[14]研究认为,半矮秆品种与高秆品种相比,在相同施氮条件下产量基本无差异,成熟期半矮秆油菜的氮素含量也与高秆油菜相当。Berry等[15]研究认为,油菜产量的增加与茎秆生长减少有关,植株越矮,倒伏越少,籽粒产量随之增加。但在中国长江流域油菜主产区,矮秆油菜的产量水平、氮素利用效率如何尚未见到相关报道。为此,本试验选用一个矮秆新品种(MJ01),并以高秆油菜作为对比,在稻油轮作体系下进行不同施氮量大田试验,探讨甘蓝型矮秆冬油菜的农艺性状、产量与氮素吸收利用特征,以期为矮秆冬油菜的栽培利用提供理论依据。

1 材料与方法

1.1 试验材料

供试矮秆油菜MJ01为四川省机收油菜区试组参试品种,由四川科乐油菜研究有限公司提供;高秆油菜川油36由四川省农业科学院作物研究所提供。

1.2 试验设计

大田试验采用二因素裂区试验设计,主因素为品种,副因素为施氮量。其中,品种设2个处理:矮秆油菜(V1)、高秆油菜(V2);施氮量设3个水平:0(N0)、135(N1)、225(N2) kg·hm-2(纯氮);共6个处理,每处理重复3次,合计18个小区,每小区面积为30 m2。试验在成都平原的崇州市四川农业大学现代农业基地进行,前茬为水稻,土壤基础肥力中等。油菜播前旋耕田地一遍,按照设定的行窝距(行距33 cm,窝距20 cm)人工拉线点播,出苗后每窝留苗2株,基本苗密度为30万株·hm-2。施肥管理上各处理磷、钾肥施用量均为90 kg·hm-2,磷、钾肥均做底肥,氮肥施用方式为底肥+苗期追肥,用量均为总施氮量的50%。试验播种期为2015年10月5日,2016年3月5日初花,2016年5月5日成熟割秆,5月12日人工打收。

1.3 测定项目与方法

成熟期农艺性状考查:在油菜成熟期,各试验小区选取代表性的6株,考查株高、一次分枝数、分枝部位高度、主花序长度、单株角果数。

植株干物质和全氮含量的测定:将上述油菜成熟期取样植株样品分为茎秆、角果壳和籽粒,带回实验室,在烘箱中105 ℃杀青30 min,然后80 ℃烘干称量。烘干样品用粉碎机磨细过0.5 mm筛,用于全氮含量测定。植株全氮含量测定采用FOSS公司的半自动凯氏定氮仪(FOSS 2300)。

成熟期籽粒产量测定:在油菜收获期,对每个小区进行人工割收,晒干后分别打收,按9%籽粒含水量折算出油菜籽粒产量。

氮素效率相关指标的计算方法如下:

氮吸收效率(NUpe,kg·kg-1)=植株氮素总积累量/土壤可供氮量;

氮利用效率(NUtE,kg·kg-1)=籽粒产量/植株总氮素积累量;

生理氮效率(NPE,kg·kg-1)=(施氮区作物产量-不施氮区作物产量)/成熟期地上部氮吸收量[16—18]。

参考Schulte等[19]的研究,氮利用效率可进一步分为:N收获指数(NHI)与籽粒N浓度(SNC)。氮收获指数(NHI,%)=籽粒中氮素积累量/植株总氮素积累量×100,籽粒氮浓度(SNC,%)=籽粒中氮素质量/籽粒干物质量。

1.4 数据处理

试验数据采用Excel 2016和DPS 7.05软件

进行整理、方差分析(ANOVA)和多重比较分析(LSD法)。

2 结果与分析

2.1 矮秆油菜和高秆油菜的农艺性状

由表1结果可知,矮秆油菜的株高、分枝部位高度、主花序长度与单株角果数均显著低于高秆油菜,但两者的一次分枝数并无显著差异。随施氮量增加,矮秆油菜各农艺性状指标的变化趋势与高秆油菜相似。N1、N2施氮量下,矮秆油菜的株高、分枝部位高度和一次分枝数的差异并不显著,而高秆油菜则表现出显著差异。

2.2 矮秆油菜和高秆油菜产量

表2结果显示,在N1条件下,矮秆油菜的生物产量低于高秆油菜,籽粒产量高于高秆油菜,均无显著差异;在N2条件下,矮秆油菜的生物产量与籽粒产量均低于高秆油菜,无显著差异。随着施氮量的增加,矮秆油菜与高秆油菜的生物产量和籽粒产量都表现出相似的变化趋势。矮秆油菜的经济系数大于高秆油菜,但无显著差异。

2.3 矮秆油菜和高秆油菜氮素效率的比较

表3结果显示,与高秆油菜相比,矮秆油菜的籽粒N浓度相对较低,而N收获指数相对较高,但均无显著差异。矮秆油菜的氮利用效率、氮生理效率均大于高秆油菜,其中氮生理效率的差异显著。矮秆油菜和高秆油菜的氮吸收效率则相近。随施氮量增加,矮秆油菜和高秆油菜的氮吸收效率都呈降低趋势,而氮利用效率和氮生理效率呈升高趋势。

表1 矮秆油菜与高秆油菜的农艺性状

Table1Agronomic traits of dwarf rape and high-stalk rape

处理Treatment株高Plantheight/cm分枝部位高度Height of branchposition/cm主花序长度Main inflorescencelength/cm一次分枝数Primarybranch单株角果数Number of podsper plantV1N093.4±5.63 e35.5±6.54 d38.3±2.04 d4.3±0.58 cd93.9±14.85 dV1N1105.1±3.55 d33.7±3.40 d53.9±6.49 bc5.1±0.81 bc168.2±32.88 cV1N2106.6±1.42 d36.4±1.66 d48.7±5.76 c6.0±0.62 ab215.8±20.43 bV2N0162.0±3.93 c80.8±4.51 c57.3±5.42c3.7±0.55 d149.6±5.17 cV2N1195.7±12.10 b104.3±7.04 b67.9±3.11 b4.8±0.42 cd218.9±35.29 bV2N2217.2±2.00 a117.1±0.73 a70.0±1.88 a6.3±0.25 a307.1±30.72 aF值 F-value14.76928.7343.4770.9221.111V0.0007∗∗0.0009∗∗0.0127∗0.22600.0044∗∗N0.0001∗∗0.0010∗∗0.0001∗∗0.0014∗0.0001∗V×N0.0021∗∗0.0002∗∗0.08190.43630.3752

V表示品种间差异,N表示施氮量差异。相同品种同列后无相同小写字母表示不同处理间差异显著(P<0.05)。**和*分别代表1%和5%显著水平。下同。

V indicated the difference among varieties, and N indicated the difference of nitrogen application rate. For the same variety, data in the same column marked without the same lowercase letter indicated significant differences atP<0.05. ** and * indicated significantly differences at 1% and 5% levels. The same as below.

表2 矮杆油菜与高秆油菜的产量

Table2Yield of dwarf rape and high-stalk rape

氮肥处理N treatment生物产量Biomass/(kg·hm-2)籽粒产量Grain yield/(kg·hm-2)经济系数Economic coefficientV1N04633.3b±236.29 c1105.5±144.04 c0.239±0.037 aV1N110316.7±2335.24 ab2289.0±380.19 b0.224±0.019 aV1N212810.0±1866.46 a2857.5±162.46 a0.225±0.024 aV2N07314.0b±1698.14 bc1471.2±281.77 c0.202±0.014 aV2N112352.5±4137.06 a2258.3±252.42 b0.192±0.045 aV2N213568.8±609.69 a3006.6±55.09 a0.226±0.012 aF值F-value0.3731.0081.053V0.34040.32560.3802N0.0013∗∗0.0001∗∗0.4680V×N0.69970.40710.3928

表3 矮杆油菜与高秆油菜的氮素利用效率

Table3Nitrogen utilization of dwarf rape and high-stalk rape

氮肥处理N treatment氮吸收效率NUpE/(kg·kg-1)氮利用效率NUtE/(kg·kg-1)生理氮效率NPE/(kg·kg-1)氮收获指数NHI籽粒氮浓度SNC/%V1N10.66±0.174 a19.53±1.950 a15.84±1.782 a0.653±0.032 ab3.32±0.371 bV1N20.53±0.053 a19.93±0.817 a17.66±0.876 a0.629±0.042 a3.21±0.229 b V2N10.63±0.124 a17.63±1.735 a13.10±2.452 a0.617±0.108 a3.34±0.159 b V2N20.58±0.008 a17.73±0.381 a14.94±0.604 a0.642±0.055 ab3.66±0.142 a F值 F-value0.4970.1110.0210.4019.596V0.90710.20540.16590.85120.1488N0.17390.84690.15360.99490.2073V×N0.51980.75550.89080.56090.0363∗

3 结论与讨论

不同株高油菜的植株形态结构存在明显差异,相同施氮条件下,川油36的株高、一次分枝高和主序长度显著高于MJ01,但一次分枝数没有较大差异。张永泰等[20]认为,株型紧凑才是适宜机械化作业的油菜理想株型结构,应该具有一次分枝多、主花序短、株高较低、成熟期一致等特点。从本研究结果来看,MJ01的株高更低,增加施氮量对其株高影响较小,更适合机械化作业。吴永成等[6]认为,与不施氮肥处理相比,施氮处理可以显著增加直播油菜成熟期的株高、分枝部位高、一次分枝数和单株角果数,本试验结果与此基本一致。单株角果数是油菜的产量构成因素之一[21-23]。在N0、N1、N2条件下,川油36的单株角果数分别比MJ01高59.32%、30.14%、42.31%。在N0和N2条件下,川油36的籽粒产量分别比MJ01高33.08%、5.22%,未达到显著差异水平;在N1条件下,MJ01的籽粒产量高于川油36。施氮可以有效增加油菜的生物产量和籽粒产量[8]。本研究结果表明,与不施氮处理相比,在N1和N2处理条件下,MJ01的籽粒产量分别提高107.06%(2 289.0 kg·hm-2)、158.48%(2 857.5 kg·hm-2)。王寅等[24]在荆州、赤壁地区采用优化种植模式,油菜(中油杂2号)产量可以达到2 764 kg·hm-2;卜容燕等[25]在稻油轮作体系采用165 kg·hm-2的施氮量,可以达到2 944 kg·hm-2(华油杂8号)的产量;曾宇等[26]设置165 kg·hm-2的施N量和15万株·hm-2的种植密度,可获得2 725.7 kg·hm-2(华油杂9号)的高产;Clarke等[14]认为,与高秆油菜相比,矮秆油菜需要等量的氮肥也可以获得高产,本研究结果与此相似。综上,与不同地区不同研究者采用不同高秆油菜品种产量相比,矮秆油菜MJ01可以达到高产水平。

N收获指数是表现作物对已吸收氮素利用率的重要指标[27]。N收获指数越高,表示油菜将氮素由源到库转运能力越强,在营养器官中无效的氮积累量越低,而籽粒中的氮素积累量越高。本研究结果表明,MJ01的籽粒N浓度与川油36基本无差异。Clarke[14]认为,矮秆油菜在适宜施氮量条件下收获时会吸收与高秆油菜相同的氮素,同时籽粒产量也相近。随着施氮量的增加,MJ01的N收获指数随之降低,而川油36的N收获指数表现为先降低后升高,这可能是不同品种作物对氮肥的响应存在差异所致[28]。Sebastian矮秆杂交品种与普通类型杂交品种相比,表现出较高的氮素利用效率,特别是在氮素亏缺条件下;矮秆品种具有较高的收获指数[29],本研究结果与此基本一致。有研究认为,作物氮利用效率的贡献小于氮吸收效率[30],N收获指数高的品种具有较高的氮效率[31]。基因型不同的油菜在氮素利用效率方面存在较大差异,氮素的累积量不能反映氮效率类型;而氮收获指数和氮利用效率都能较好地反映氮效率类型[32]。氮生理效率能反映植株全氮量转移至籽粒中的能力[33]。本研究结果表明,在2种施氮量条件下,MJ01均能有效地将植株吸收的氮素,以及从土壤中吸收的全氮转移至经济器官;2个品种油菜从土壤中吸收氮素的能力无明显差异;MJ01油菜体内氮素转运能力较强,在茎秆、角果壳、土壤等的氮素流失较少,而籽粒中的有效氮素积累量较大。还有研究表明,矮秆油菜品种与普通株高品种相比,在氮素供应不足时表现出较高的N收获指数、氮吸收效率、氮利用效率,表明(半)矮秆油菜更适应N亏缺环境[34]。

矮秆油菜MJ01的株高较低,株高随施氮量增加无显著变化,有利于机械作业。在N1和N2条件下,矮秆油菜MJ01的籽粒产量与高秆油菜相比均无显著差异。矮秆油菜的收获指数显著大于高秆油菜。矮秆油菜和高秆油菜具有相近的氮吸收效率,但矮秆油菜的氮利用效率、氮生理效率均大于高秆油菜。

猜你喜欢

矮秆氮量利用效率
中国耕地低碳利用效率时空演变及其驱动因素
浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响
不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点
黍子矮秆突变体‘87’表型及对赤霉素敏感性分析
灌区灌溉水利用效率分析与节水改造研究
小麦矮秆突变体je0098的遗传分析与其矮秆基因定位
47份外引小麦种质中矮秆基因的检测及其降秆效应分析
氮肥施用对不同燕麦品种生长发育的影响
小麦氮肥用量试验
小麦氮肥用量试验