深度学习几何直观在教学中的应用
2019-11-26卜艳春
卜艳春
(徐州市贾汪区紫庄镇旗山小学,江苏 徐州 221133)
一、深度感知几何直观在教学中的应用
(一)分数学习中的直观
1.通过“折一折”,认识几分之一
教材先从实物模型(月饼)开始引出分数的产生,帮助学生理解在“平均分”的前提下,一块月饼的“一半”就是它的二分之一,体会分数的具体含义。教学中,可以因势利导,借助模型(正方形、长方形、圆形纸片),让学生折一折,注意怎样折表示平均分,看看平均分成几份,指出这样的一份,可以用分数怎样表示。在初步建立分数模型的基础上,弄清把一个物体或图形平均分成几份,分母就是几,表示这样的一份,分子就是1。
2.通过“涂一涂”,理解几分之几
在直观认识几分之一的基础上,学生已经积累了一定的经验,即通过折纸活动进行平均分,确定将纸片平均分几份,表示其中一份就是几分之一。教师可以适当放手,让学生给对折好的纸片涂色,涂两份、3份等,说说可以用分数多少表示,同时注意引导学生与几分之一建立联系,例如:四分之几里有几个四分之一组成,四分之几与四分之一有何相同和不同之处等。
(二)数的运算中的直观
在计算教学中要重视算理。理解运算的意义往往要经历四个阶段:情境感知、动作表征、语言表征、符号表征。在中小学数学教学中几何直观具体表现为四种形式,即实物直观、简约符号直观、图形直观和替代物直观。教学时,学生的年龄特点和教学内容,通过直观感知,重视数形结合等方法,培养几何直观的能力。
例如在教学《20以内进位加法》,学生用小棒、圆片等实物操作来感知“凑十”的过程和方法,进而理解“凑十”的算理。如《9加几》的教学9+4,学生同桌合作在格子里面摆9个圆片,外面放4个圆片。学生通过观察,动手“拿”,从外面拿1个放进格子里,这样格子里就“凑”成10个圆片,外面还有3个,“合”起来就是13个圆片。在“拿”的基础上提升,把4分成1和3,1和9凑成10,10加3是13。最后学生用语言来描述“拿、凑、合”的过程。此时,学生能很好的理解“凑十”的含义,从而掌握“凑十法”。
(三)运算律中的直观
在四年级学习的5条运算律中“乘法分配律”较之其他运算律,是公认的教学难点。因为它不是单一的乘法运算,还涉及加法运算。课堂上,如果仅仅让学生经历从数到数,从算到算,用数表征数,用算表征算的乘法分配律建构过程,不但会增加学生的记忆负担,还会使学生在运用中产生混乱。若借助几何直观教学,了解其几何背景,不仅帮助学生理解概念、分析及发现算式间的关系,亦能使课堂教学活泼起来,激发学生的学习兴趣,诱发对知识的进一步理解与运用。
二、深度学习几何直观能力的培养
几何直观已经成为数学界和数学教育界关注的问题,那么如何培养学生的几何直观能力、如何更好地发挥几何直观性的教学价值?我在日常教学过程中做了以下尝试:
第一,引导学生学会观察。学生的空间知识来自丰富的现实原型,与现实生活非常紧密,也就是引导学生学会认真观察周围的实物,重视现实生活中有关空间与图形的问题,从视觉上去感受空间观念,让学生在学习活动中自己动手动脑,摆摆、折折、拼拼、量量。让他们在观察时进行自主、合作、探究了解这些几何图形的特征及性质,来发展学生的空间观念,培养学生的空间思维能力。
第二,加强练习操作。根据教学内容自制学具,让学生进行实际操作训练。“操作是智力的源泉,思维的起点”教学时老师不但要重视引导观察,而且要重视让他们变被动听讲到一起动手、共同参与,亲身操作。多种形式的操作能使他们的视觉、触觉协调起来,充分发挥其主观能动性,以丰富他们的空间观念。比如四年级上册第四单元三角形内角和的教学,一般来说,探究三角形内角和的方法有以下几种:方法一,量一量,度量三个内角的度数,求和;方法二,撕一撕,拼一拼,把三个内角撕下来,拼成一个平角;方法三,折一折,把三个内角向内折叠拼成一个平角。学生们在一系列的动手操作实践中积累了活动经验,获得了直观体验。
第三,数形结合,学会画图的技巧。在解决数学问题时,能画图时尽量画图,目的是把抽象的东西直观的呈现出来,把本质的东西显现出来。如植树问题的教学,假如我们在教学中只是注意让学生会区分植树问题的三种情况,并要求学生牢牢地记住相应的计算法则(“加一”“不加不减”“减一”)。通过数形结合,让学生借助图形来理解和分析,使抽象的“植树问题”直观化、生动化。有了数形结合这根拐杖,学生们才能走得更稳、更好,能将“发现规律”与“运用规律”链接起来,借助数形结合将图文信息与学习基础整合,使得学生思维发展有了凭借,几何直观能力有了发展。
总之,小学数学的特点是“直观的抽象”,“抽象”是数学内容的本质特点,“直观”是小学生的思维特点。在小学数学教学中深度学习“几何直观”,借助“直观”让学生体会到“数学没那么抽象”是我们数学教师的职责,在这条道路上我会不断努力,倾力而行。