一类代数上的弱可加交换映射
2019-10-28霍东华
霍东华
摘要:設A是一个有单位元1的代数.称映射f:A→A是一个弱可加映射,如果满足对任意的x,y∈A,存在tx,y,sx,y∈IF使得f(x+y)=tx,yf(x)+sx,yf (y)成立.本文证明了在一定的假设下,如果,是交换映射,则存在Ao(x)∈4和一个从4到Z(A)的映射Ai,使得对所有的x∈A有f(x)=λ0(x)x+ λ1(x).作为应用,刻画了Mn (IF)上一类交换的弱可加映射.
关键词:代数; 交换映射; 弱可加映射
中图分类号:0152.2
文献标志码:A
DOI: 10.3969/j.issn.1000-5641.2019.04.001
[参考文献]
[1]POSNER E c Derivation in prime rings [J]. Proceedings of American Mathematical Society. 1957, 8(6): 1093-1100
[2]BRESAR M. Centralizing mappings on von Neumann algebras [J]. Proceedings of American Mathematical So-ciety, 1991, 111(2): 501-510.
[3]BRESAR M. Centralizing mappings and derivations in prirue rings [J]. Journal of Algebra, 1993, 156(2) : 385-394.
[4] MAYNE J H. Centralizing automorphisms of prime rings [J]. Canadian Matheruatical Bulletin, 1976, 19(1):113-115.
[5]BRESAR M, MARTINDLE W S, MIERS C R. Centralizing maps in prime ring with involution [Jl Journal ofAlgebra, 1993, 161(2): 342-357.
[6]LEE T K.σ-Commuting mappings in semiprime rings [J]. Communications in Algebra, 2001, 29(7): 2945-2951.
[7]LEE T K. Derivations and centralizing mappings in prime rings [J]. Taiwanese Journal of Mathematics, 1997,1(3): 333-342.
[8]LEE T C. Derivations and centralizing maps on skew elements [J] . Soochow Journal of Mathematics, 1998, 24(4):273-290.
[9]FILIPPIS V D, DHARA B. Some results concerning n - σ-centralizing mappings in semiprime rings [J]. ArabianJournal of Mathematics, 2014, 3(1): 15-21.
[10] DU Y Q, WANG Y. k-Commuting maps on triangular algebras [J] Linear Algebra and its Applications, 2012,436(5): 1367-1375.
[11]LI Y B, WEI F. Semi-centralizing maps of generalized matrix algebras [J]. Linear Algebra and its Applications,2012, 436(5): 1122-1153.
[12]Qi x F, HOU J C. Characterization of k-commuting additive maps on rings [J]. Linear Algebra and its Applica-tions, 2015, 468: 48-62.
[13]ALI S, DAR N A. On *-centralizing mappings in rings with involution [J]. Georgian Mathematical Journal, 2014,21(1): 25-28.
[14]BRESAR M. Commuting Maps: A survey [J], Taiwanese Journal of Mathematics, 2004, 8(3): 361-397.
[15] BRESAR M, SEMRL P. Commuting traces of biadditive maps revisited [J] Comruunications in Algebra, 2003,31(1): 381-388.
[16]BAI Z F. DU S P. Strong commutativity preserving maps on rings [J]. Rocky Mountain Journal of Mathematics,2014, 44(3) : 733-742.