APP下载

纯电动汽车复合储能系统及其能量控制策略

2019-10-21周美兰冯继峰张宇

电机与控制学报 2019年5期
关键词:电容储能双向

周美兰 冯继峰 张宇

Abstract:The composite energy storage system composed of battery, super capacitor and bi-directional DC-DC converter was studied to solve the problem of insufficient mileage and short battery life in electric vehicles. In order to realize rational power allocation of battery and super capacitor, the logic threshold and fuzzy control strategy were established respectively. The vehicle model was constructed based on the electric vehicle simulation software.Through simulation study,the characteristic curves of the current and SOC of battery and the current curves of super capacitor were got, and the results were compared with the single battery power supply. For verifying the feasibility and effectiveness of the control strategy, the experimental platform was built to study electric vehicles during driving and braking. Simulation and the experimental results show the composite energy storage system and its control strategies successfully reduce the charge and discharge current of battery, regenerate the braking energy and improve the mileage of electric vehicles.

Keywords:electric vehicles; composite energy storage; logic threshold; fuzzy control

0 引 言

近年来,随着我国汽车保有量的急剧增加,石油资源逐渐匮乏、环境日益恶劣等问题也接踵而至,传统燃油汽车造成的负面影响已无法满足人们对可持续发展的要求,纯电动汽车已成为今后的主要发展方向[1]。纯电动汽车蓄电池的发展较为滞后,其功率密度较低、充放电次数有限、寿命较短,很难满足人们的日常需求[2-3]。

为解决这一技术难题,在纯电动汽车电源系统中安装了超级电容和双向DC-DC变换器,从而组成了复合储能系统[4]。由于超级电容具有功率密度高、寿命长、能承受瞬时大电流充放电等优点,由此组成的复合储能系统能够提升原有电源系统的性能,从而提高纯电动汽车的动力性能和续驶里程[5-7]。

随着技术的不断发展,复合储能系统逐渐走进研究人员的视野,并已取得一些可喜的成就[8-9]。Chugoku电力公司和丰田公司对蓄电池和超级电容构成的复合储能系统实验研究,实验结果显示,相比单一蓄电池电源的电动汽车,具有复合储能系统的电动汽车具有更好的动力性能[10]。Arani S K等人利用遗传算法优化电动汽车模糊控制器并进行实验,结果表明,所开发的模糊控制器在降低功耗等方面优于标准模糊控制器[11]。我国也开始对复合储能系统进行各项研究[12]。如王斌等人提出了一种新型复合储能系统结构,并设计了7种工作方案,有效提高了复合储能系统工作效率并保证蓄电池的充放电安全[13]。Chen Jian等人提出了一种电动汽车用模糊逻辑参数调整的自适应控制方法,仿真和实验结果证明了所提出方法的有效性[14]。但在能量回馈、蓄电池保护和电动汽车续驶里程等方面仍存在较大的缺陷。针对此类问题,本文提出了复合储能系统的能量控制策略。

本文主要根据所选复合储能系统结构设计了基于逻辑门限和基于模糊控制的能量控制策略。在AVL CRUISE仿真软件中搭建了纯电动汽车整车模型进行仿真分析,根据仿真分析的结果搭建了实验台架,从而达到验证所设计的控制策略的可行性与有效性的目的。

1 复合储能系统

复合储能系统主要由蓄电池、超级电容和双向DC-DC变换器等三部分组成。其连接方式一般可以分为以下几种[15-16]:蓄电池与超级电容并联、蓄电池串联双向DC-DC变换器后与超级电容并联、超级电容串联双向DC-DC变换器后与蓄电池并联、蓄电池和超级电容分别串联一个双向DC-DC变換器后并联,这当中以第三种方式最为经济实用且易于实现,其连接方式如图1所示。

5 结 论

本文对复合储能系统进行了研究,制定了两种控制策略。基于CRUISE在NEDC工况下进行了仿真分析,搭建了纯电动汽车复合储能系统实验台架,进行了负载和制动实验,得到结论如下:

(1)仿真结果表明,制定的纯电动汽车复合储能系统能量控制策略能够合理地进行功率分配,使蓄电池输出电流较为平稳,延长蓄电池使用寿命,同时超级电容还能有效地回收制动能量,提高能量的利用率。

(2)与单一蓄电池能源相比,逻辑门限控制策略总体节能6.17%,模糊控制策略总体节能34.57%;与逻辑门限控制策略相比,模糊控制策略节能效果提升5倍多,极大地提高了超级电容的利用率。

(3)负载与制动实验表明,基于模糊控制策略的复合储能系统能够实现对回馈能量的有效利用,证明了所提控制策略的可行性。

参 考 文 献:

[1] 申永鹏,王耀南,孟步敏,等.增程式电动汽车功率流优化策略[J].中国电机工程学报,2015,35(16):4035.

SHEN Yongpeng, WANG Yaonan, MENG Bumin, et al. Power flow optimization strategy of range extender electric vehicle[J]. Proceedings of the CSEE,2015, 35(16):4035.

[2] 徐顺刚,钟其水,朱仁江.动力电池均衡充电控制策略研究[J].电机与控制学报,2012,16(2):62.

XU Shungang, ZHONG Qishui, ZHU Renjiang. Research of equalizing charge control strategy for power battery[J]. Electric Machines and Control, 2012,16(2):62.

[3] ZHANG Qiao, JU Feng, ZHANG Sumin, et al. Power management for hybrid energy storage system of electric vehicles considering tnaccurate terrain information[J]. IEEE Transactions on Automation Science and Engineering,2017,14(2):608.

[4] SHEN JUNYI, KHALIGH A. Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics,2016,12(5):1910.

[5] YOO H, SUL S, PARK Y, et al. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries[J]. IEEE Transactions on Industry Applications,2008,44(1): 108.

[6] 张纯江,董杰,刘君,等.蓄电池与超级电容混合储能系统的控制策略[J].电工技术学报,2014,29(4):334.

ZHANG Chunjiang, DONG Jie, LIU Jun, et al. A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society,2014, 29(4):334.

[7] 黃万友,程勇,曹红,等.参考济南道路工况的纯电动汽车能量回馈策略[J].电机与控制学报,2012, 16(10):86.

HUANG Wanyou, CHENG Yong, CAO Hong, et al. Development of EVs energy feedback control strategy referring to Jinan′s vehicle driving-cycle[J]. Electric Machines and Control, 2012,16(10):86.

[8] 王琪,孙玉坤.一种混合动力汽车复合电源能量管理系统控制策略与优化设计方法研究[J].中国电机工程学报,2014,S1:195.

WANG Qi, SUN Yukun. Research on the control ctrategy and optimization of energy management system of hybrid energy storage in a hybrid electric vehicle[J]. Proceedings of the CSEE, 2014, S1:195.

[9] 张相军,刘冠男,王懿杰,等.软开关双向DC-DC变换器控制模型[J].电机与控制学报,2013,17(11):89.

ZHANG Xiangjun, LIU Guannan, WANG Yijie, et al. Bidirectional DC/DC converter control model analysis based on super capacitor[J]. Electric Machines and Control,2013,17(11):89.

[10] SONG Chunpeng. Analysis of stakeholder on the construction of electric vehicle charging station in China[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific, August 31- September 3, 2014, Beijing, China. 2014:1-6.

[11] ARANI S K,NIASAR A H,ZADEH A H.Energy management of dual-source propelled electric vehicle using fuzzy controller optimized via genetic algorithm[C]//7th Power Electronics and Drive Systems Technologies Conference, February 16-18,2016,Tehran,Iran. 2016:338-343.

[12] HUNG Yihsuan, TUNG Yuming, CHANG Chunhsin. Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain[J]. Applied Energy,2016,173:184.

[13] 王斌,徐俊,曹秉刚,等.一种新型电动汽车复合电源结构及其功率分配策略[J].汽车工程,2015,37(09): 1053.

WANG Bin, XU Jun, CAO Binggang, et al. A novel hybrid power configuration and its power distribution strategy for electric vehicles[J]. Automotive Engineering,2015,37(09):1053

[14] CHEN Jian, XU Chenfeng, WU Chengshuai, et al. Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles[J]. IEEE Transactions on Industrial Informatics,2016, PP(99):1.

[15] BOSTJAN P, DARKO V, JANKO P. A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application[J]. Applied Energy,2015,137: 64.

[16] CAO Jian, EMADI A. A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics,2012,27(01):122.

[17] 李寿涛,马用学,郭鹏程,等.一种变逻辑门限值的车辆稳定性控制策略研究[J].汽车工程,2015,7:782.

LI Shoutao, MA Yongxue, GUO Pengcheng, et al. A study on vehicle stability control strategy with variable threshold[J]. Automotive Engineering, 2015,7:782.

[18] 王庆年,于永涛,曾小华,等.基于CRUISE软件的混合動力汽车正向仿真平台的开发[J]. 吉林大学学报:工学版,2009,39(6):1413.

WANGQingnian, YU Yongtao, ZENG Xiaohua, et al. Development of forward-looking simulation platform for hybrid electric vehicle based on software CRUISE[J]. Journal of Jilin University: Engineering and Technology Edition,2009,39(6):1413.

[19] 胡建军,肖军,晏玖江.纯电动车车用复合储能装置控制策略及参数优化[J].重庆大学学报,2016,39(1): 1.

HU Jianjun, XIAO Jun, YAN Jiujiang. Control strategy and parameter optimization of hybrid energy storage device for electric vehicles[J]. Journal of Chongqing University,2016,39(1):1.

[20] ZHANG Yu, MENG Dawei, ZHOU Meilan, et al. Energy flow analysis of an electric city bus based on wavelet transform with Mallet prolongation[J]. International Transactions on Electrical Energy Systems,2017,27(7):1.

(编辑:刘素菊)

猜你喜欢

电容储能双向
考虑用户优先级的云储能用电策略优化
混凝土泵车用双向液压锁故障探讨
储能: 碳中和下的新赛道
超级电容车的充电,有望几十秒内搞定吗?
浅谈电感和电容在交流电路中的作用
电力系统中的能量储存技术
朴素高效的双向快充
例说乘法公式的双向应用
广电网络双向网改造方案
LW36-126(W)/T型断路器储能超时复归问题改进方案的提出