乳化沥青现场冷再生基层沥青混凝土路面长期性能评价
2019-10-20李凯
摘 要:对于乳化沥青冷再生配合比设计而言,其关键环节便是乳化沥青配方设计,也即是乳化沥青的选择及其与RAP料的配伍性设计验证,乳化沥青配方对于乳化沥青冷再生混合料路用性能及后期的施工质量具有至关重要的影响。目前,国家及行业规范均未对冷再生乳化沥青的配方设计提出明确的方法及要求。论文针对这一问题,从乳化沥青冷再生混合料强度形成机理入手,探讨了适用于冷再生的乳化沥青配方设计理论与方法,论文对于乳化沥青冷再生配合比设计具有重要参考价值。
关键词:沥青路面;冷再生;基层沥青混凝土路面;长期性能评价
一、乳化沥青冷再生材料组成
事实上,乳化沥青冷再生混合料是一种复杂的复合材料,其强度成型过程也较热拌混合料要复杂的多。我国集料大部分是由硅酸盐和碳酸盐等矿物质组成,其表面被水润湿后带负电荷,而冷再生采用的为阳离子乳化沥青,两者在有水膜存在的情况下,沥青微粒可迅速、牢固地与矿料表面通过电荷作用吸附结合,最终粘结在一起。电荷作用的过程也是乳化沥青破乳的过程,对乳化沥青冷再生混合料来说,这个过程通常需要较长的时间。压实不久的乳化沥青冷再生混合料是由初步开始破乳并恢复沥青性质的乳化沥青、大量的水、粗细铣刨料以及矿粉构成,某些情况下还包括较少量的水泥新加集料。压实成型的混合料,在行车荷载和环境温度作用下,水分不断蒸发、乳化沥青不断破乳并恢复沥青粘结性质,30天后乳化沥青冷再生混合料含有很少量的水分,强度基本形成,最终达到与热拌沥青路面几乎相同的使用效果。因此,在整个乳化沥青冷再生路面成型的过程中,更多的是RAP料与乳化沥青之间的化学吸附起主导作用。
二、乳化沥青冷再生混合料强度形成机理
(一)同热拌沥青混合料相比,乳化沥青冷再生混合料强度构成因素同样是材料的内聚力和内摩阻力;不同的是,乳化沥青冷再生混合料的内聚力和内摩阻力有一个动态的变化过程,在混合料初期和后期对混合料强度的贡献不同。内聚力主要由沥青的粘聚力及瀝青与矿料的粘附力组成,内摩阻力主要由铣刨料之间的嵌挤和摩擦构成。乳化沥青冷再生混合料的抗剪强度可通过三轴试验方法应用摩尔-库仑包络线方程求得。
(二)乳化沥青冷再生混合料必须经过乳液与集料的粘附、分解破乳、水分蒸发等环节之后才能完全恢复原有的粘结性能,同时在压实作用下,破乳后沥青与铣刨料紧密粘结在一起并最终形成强度。摊铺碾压初始阶段的乳化沥青冷再生混合料,由于沥青粘结力较低,所以混合料内聚力较低;同时混合料中存在较多水分,水的粘度低于沥青,水分在混合料中甚至起着“润滑”作用,降低集料间内摩阻力,此时混合料初期强度主要来源于内摩阻力,即内摩阻力对强度的贡献远大于内聚力。随着水分蒸发和行车荷载的压实作用,乳化沥青冷再生混合料密实度逐步增加,裹覆在铣刨料表面的沥青、乳化剂的分布状态进一步调整、强度不断增强,30天后强度几乎完全形成。此时混合料具有与热拌沥青混合料相同(接近)的路用性能,内聚力和内摩阻力同时起到重要作用,尤其是内聚力的提高,使强度有大幅的升高。
(三)由于乳化沥青在初期大部分还未破乳,未形成粘结力,内摩阻力在初期强度中起主要作用,后期由于路面的压实也会有一定的增长幅度,其大小主要与级配有关。但乳化沥青冷再生混合料大多由假级配的RAP料组成,实际级配组成中粗集料含量非常少,绝大部分集料粒径较细,难以形成骨架嵌挤结构。因此随着乳化沥青的破乳、凝结,内聚力逐渐在乳化沥青冷再生混合料体系中起主导作用,对整个混合料体系的强度贡献更大。
三、乳化沥青冷再生混合料长期性能评价
(一)沥青乳化原理及乳化剂的种类选择
1、对于乳化沥青来说,直接将沥青分散到水中需要克服巨大的界面张力作用,也就是说要施加很大的能量。且沥青分散到很小的颗粒时,其比表面积增加非常大,这样使产生的乳化沥青体系具有很高的能量状态,生成的乳液也不会稳定,因此在生产乳化沥青时,降低水的表面张力是非常必要的。表面活性剂由于具有亲水基和憎水基的两亲分子结构,能吸附于油水相排斥的界面上,从而降低油水之间的界面张力,使油水混合液能够在同一个体系内较为稳定的存在。沥青乳化剂是表面活性剂的一种,在进行乳化沥青生产时,乳化剂能够降低沥青与水之间的界面张力,同时由于乳化剂的离子特性,能够在形成的乳液中,使沥青颗粒带上电荷并形成界面膜及水合层,使得乳化沥青能够有较长时间的稳定储存。
2、沥青乳化剂的种类很多,但总体来说,亲水基对沥青乳化剂的性质影响较大,所以通常按离子类型和亲水基的种类划分。按离子类型分为阳离子、阴离子、两性、非离子型沥青乳化剂;按破乳速度则分为快裂、中裂、慢裂乳化剂。乳化沥青冷再生中采用的主要为阳离子慢裂乳化剂,但这样的乳化剂有很多种。虽然乳化剂在乳化沥青中所占的比例较小,但其对乳化沥青的生产、储存及施工,均有较大的影响,所以,需要根据生产乳液的用途、乳化效果来精心的选择乳化剂的种类。在进行冷再生乳化沥青配方设计时,要综合考虑现场的气候条件、设计厚度、混合料级配、水泥品种及掺量、RAP料活性、拌和方式、成型方式、运距等等,因此在进行乳化剂选择时将至少考虑三个方面:乳化剂类型的选择、乳化剂效果的评价、乳化剂效率。
(二)乳化沥青的固含量和用量
1、乳化沥青的固含量一般控制在55~70%之间,再生用的乳化沥青固含量甚至要求大于62%。较高的乳化沥青的固含量不仅能够节约运费(其中含有约40%的水),提高生产效率,而且还影响其与集料的裹覆状况、储存稳定性、破乳速度等。
2、乳化沥青冷再生混合料中的乳化沥青最终是以沥青膜的形式覆盖在集料表面,较高的乳化沥青固含量能够提高较大的粘度,与集料结合时沥青膜的厚度也较厚,使混合料拌合时会有较理想的裹覆效果。同时较厚的沥青膜厚度对于再生混合料的抗水损性能和疲劳性能都有很大的帮助。因此在乳化沥青冷再生体系中,较高的乳化沥青固含量和乳化沥青用量是必要的。乳化沥青的固含量还影响其儲存稳定性和破乳速度。由于乳化沥青的分散相粒子(沥青微粒)直径在0.1~10μm的范围内,远远大于溶液中分子的直径,因此属于粗分散的水包油体系,这种体系只能在一定的时间能处于相对稳定的状态,最终必然会出现油水分层现象,但合适的沥青固含量能够使乳化沥青储存较长的时间。乳化沥青是相界面很大的多相体系,带电荷的沥青微粒形成的液珠有自发凝结,以降低体系总界面能的倾向。虽然油水界面之间界面张力的降低有助于乳化沥青的稳定,但乳化沥青中的液珠一直是处于相互碰撞的布朗运动中。如果碰撞过程中界面膜破裂,两个液珠将并结成一个大液珠。这一过程继续下去,使体系的自由能降低,最终将导致乳化沥青的破乳分层。
四、结束语
乳化沥青冷再生混合料的强度完全形成非常漫长,需要经历水分不断蒸发、乳化沥青不断破乳并恢复沥青粘结性质的过程;乳化沥青冷再生混合料的强度仍然由内聚力和内摩阻力形成,内摩阻力与级配有关,内聚力与乳化沥青的粘结性能有关。在强度形成初期,乳化沥青并未破乳化,内摩阻力起主要作用,之后随着乳化沥青的破乳,内聚力呈大幅度增加,并逐渐占主导地位;乳化剂种类、乳化沥青的固含量和用量通过影响乳化沥青与集料的裹覆状况、乳化沥青的破乳速度和储存稳定性来影响乳化沥青冷再生混合料内聚力的形成,并分析了其影响机理。
参考文献:
[1]王剑,李莉,金光来,冯雯雯.冷再生基层沥青路面的结构组合设计优化[J].筑路机械与施工机械化,2019,36(01):33-37.
[2]鲁巍巍.旧沥青路面冷再生水稳基层力学性能试验研究[J].中外公路,2018,38(01):77-79.
[3]张怀志,樊火印.乳化沥青现场冷再生基层沥青混凝土路面长期性能评价[J].公路,2015,60(02):29-33.
作者简介:李凯,1995年3月,男,辽宁省朝阳市,2020年4月毕业于沈阳建筑大学交通运输工程,在读硕士,道路冷再生方向。