脑桥外侧臂旁核注射Nesfatin-1对大鼠低糖血症反向调节的影响
2019-09-10王柳欣张彩顺袁骏华刘媛宋莉敏董静
王柳欣 张彩顺 袁骏华 刘媛 宋莉敏 董静
[摘要] 目的 观察脑桥外侧臂旁核(LPBN)注射Nesfatin-1对正常大鼠低糖血症反向调节影响,探究其调节血糖机制。
方法采用免疫荧光技术,观察低糖血症条件下大鼠LPBN中Nesfatin-1阳性神经元与c-fos免疫阳性神经元的共表达情况;大鼠用胰岛素(10或15 U/kg)诱导低糖血症后单侧LPBN注射Nesfatin-1(50 pmol、0.5 μL),观察Nesfatin-1对低糖血癥状态下大鼠血糖影响。
结果胰岛素组大鼠LPBN Nesfatin-1阳性神经元与c-fos免疫阳性神经元共表达明显高于对照组(t=3.044,P<0.05)。LPBN给药后90、120 min时,低剂量胰岛素+Nesfatin-1组血糖水平明显高于低剂量胰岛素+生理盐水组(t=2.433、3.045,P<0.05);LPBN给药后30、60 min时,高剂量胰岛素+Nesfatin-1组血糖水平明显高于高剂量胰岛素+生理盐水组(t=2.967、3.546,P<0.05);LPBN给药后30 min时,高剂量胰岛素+Nesfatin-1组血糖水平明显高于低剂量胰岛素+Nesfatin-1组(t=4.363,P<0.01)。
结论LPBN注射 Nesfatin-1可以增强低糖血症反向调节。
[关键词] 臂旁核;Nesfatin-1;低糖血症症;反向调节;大鼠,Wistar
[中图分类号] R338.2
[文献标志码] A
[文章编号] 2096-5532(2019)01-0040-04
EFFECT OF NESFATIN-1 INJECTION IN THE LATERAL PARABRACHIAL NUCLEUS ON REVERSE REGULATION OF HYPOGLYCEMIA IN RATS
WANG Liuxin, ZHANG Caishun, YUAN Junhua, LIU Yuan, SONG Limin, DONG Jing
(Special Medicine Department, Basic Medical College, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo observe the effect of Nesfatin-1 injection in the lateral parabrachial nucleus (LPBN) on reverse regulation of hypoglycemia in normal rats and to investigate the mechanism for blood glucose regulation.
MethodsThe coexpression of Nesfatin-1-positive neurons and c-fos-immunopositive neurons in the LPBN of rats was evaluated under hypoglycemic condition using immunofluorescence technique; after successful induction of hypoglycemia by insulin (10 or 15 U/kg), Nesfatin-1 (50 pmol, 0.5 μL) was injected into the unilateral LPBN of the rats to observe the effect of Nesfatin-1 on the blood glucose level of rats under hypoglycemic condition.
ResultsThe insulin group had significantly increased coexpression of Nesfatin-1-positive neurons and c-fos-immunopositive neurons in the LPBN of the rats compared with the control group (t=3.044,P<0.05). At 90 and 120 min after administration in the LPNB, the low-dose insulin+Nesfatin-1 group had a significantly increased blood glucose level than the low-dose insulin+normal saline group (t=2.433 and 3.045, respectively, both P<0.05); at 30 and 60 min after administration in the LPNB, the high-dose insulin+Nesfatin-1 group had a significantly increased blood glucose level than the high-dose insulin+normal saline group (t=2.967 and 3.546, respectively, both P<0.05); at 30 min after administration in the LPNB, the high-dose insulin+Nesfatin-1 group had a significantly increased blood glucose level than the low-dose insulin+Nesfatin-1 group (t=4.363,P<0.01).
ConclusionInjection of Nesfatin-1 in the LPBN can improve the reverse regulation of hypoglycemia.
[KEY WORDS]parabrachial nucleus; Nesfatin-1; hypoglycemia; counter regulatory; rats, Wistar
Nesfatin-1是由日本群馬大学OH等[1]发现的一种脑肠肽。作为一种厌食肽,Nestatin-1在大鼠的摄食和能量代谢中发挥重要作用[2],并且Nesfatin-1参与调节糖代谢[3-5]。既往研究表明,除广泛分布于外周外,Nesfatin-1阳性神经元还分布于室旁核(PVN)、视上核(SON)、弓状核(ARC)、腹内侧核(VMH)、下丘脑外侧区(LHA)、 迷走神经复合体(DVC)、孤束核(NTS)等多个中枢核团[6-7]。最新研究发现,小鼠和大鼠的外侧臂旁核(LPBN)中也有Nesfatin-1阳性神经元的分布[8-9]。有Meta分析结果表明,随着糖尿病进展,血浆中Nesfatin-1表达水平下降。这与糖尿病病人低糖血症反向调节(CRR)受损的发病过程相一致,提示Nesfatin-1的减少可能为CRR受损的机制之一[10]。BONNET等[11]研究证实,在胰岛素和2-脱氧-D-葡萄糖(2-DG)诱导的低糖血症模型鼠中,PVN、迷走神经运动背核(DMN)和NTS等核团中Nesfatin-1阳性神经元被激活。新近研究表明,在胰岛素和2-DG 诱导的低糖血症模型鼠中,LPBN中CCK神经元被激活,并投射到下丘脑VMH,通过类固醇生成因子-1神经元发挥作用,证实LPBN在CRR中扮演重要角色[12]。本实验室已经证实LPBN注射Nesfatin-1可以抑制大鼠夜间摄食[13],但Nesfatin-1能否作用于LPBN并参与CRR还不清楚。本实验旨在探究LPBN注射Nesfatin-1对大鼠CRR的影响。
1 材料与方法
1.1 实验材料
1.1.1实验动物 成年雄性Wistar大鼠40只,体质量270~310 g,购于青岛市药品检验所。所有大鼠饲养于标准化动物房(温度为(23±2)℃,7:00~19:00光照环境),自由饮水和进食。适应环境1周后开始实验。
1.1.2药品及试剂 Nesfatin-1与Nesfatin-1一抗(兔来源)均购于美国Phoenix公司,山羊抗兔二抗IgG购于北京中杉金桥公司,绵羊来源c-fos一抗购于美国Millipore公司,驴抗绵羊二抗购于R&D公司,门冬胰岛素注射液(笔芯)为诺瑞诺德公司产品,生理盐水(NS)购于青岛大学校医院,水合氯醛为天津市瑞金特化学品有限公司产品。
1.2 实验方法
1.2.1Nesfatin-1阳性神经元与c-fos免疫阳性神经元共表达实验 取8只大鼠,随机分为对照组和胰岛素组,每组4只。于实验前1 d的21:00开始禁食,允许自由饮水。实验当天9:00开始腹腔给药,胰岛素组用胰岛素笔腹腔注射胰岛素(10 U/kg),对照组腹腔注射NS。分别于给药0、30、60、90、120 min时检测血糖水平。给药2 h后腹腔注射80 g/L水合氯醛麻醉,10 min后行心脏灌注术,迅速断头取脑组织,将其置于40 g/L多聚甲醛溶液中4 ℃冰箱固定24 h,用300 g/L蔗糖溶液4 ℃脱水24 h。切取LPBN的脑组织行冷冻切片,切片厚度为10~15 μm,将切片置于载玻片上。切好的脑片于60 ℃烤箱烤片4 h后,浸泡于PBST溶液中,20 min后置于修复液内,应用微波炉95 ℃中火修复抗原10 min,待自然冷却后以PBST溶液冲洗3次,小牛血清封闭液室温封闭2 h,Nesfatin-1抗体(兔抗大鼠,1∶500)与c-fos抗体(绵羊抗大鼠,1∶250)4 ℃孵育脑片72 h,用PBST溶液冲洗3次,Nesfatin-1二抗(山羊抗兔,1∶100,绿色荧光)与c-fos二抗(驴抗绵羊,1∶200,红色荧光)室温孵育2 h,以PBST溶液洗片后,用封片液(PBST∶甘油=1∶1)封片固定脑片。在荧光显微镜下观察Nesfatin-1及c-fos的表达,应用Image Pro Plus软件对视野内所有阳性细胞进行计数。
1.2.2LPBN注射Nesfatin-1对血糖影响实验 取剩余32只大鼠,腹腔注射80 g/L水合氯醛0.4 g/kg麻醉大鼠,将其固定于立体定位仪上[14],并参照坐标将留置套管埋入LPBN[15-16]。大鼠LPBN埋管后休息1周开始实验。将大鼠随机分为低剂量胰岛素+NS组(A组,n=6)、低剂量胰岛素+Nesfatin-1组(B组,n=6)、高剂量胰岛素+NS组(C组,n=10)和高剂量胰岛素+Nesfatin-1组(D组,n=10)。所有大鼠实验前1 d的21:00开始禁食,实验当天8:50腹腔注射胰岛素(10或15 U/kg)或NS后,9:00分别在LPBN缓慢注射 Nesfatin-1(50 pmol)和NS 0.5 μL(剂量参考相关文献[14,17-18]),停留2 min后拔针(注射针比外管长0.8 mm)。用采血针经尾静脉采血,检测LPBN给药后0、30、60、90、120 min时的血糖。实验后的大鼠经埋管LPBN注射滂胺天蓝2 μL,取脑组织制备15 μm 厚的冷冻切片。在光镜下观察滂胺天蓝注射标记点的位置,定位准确的样本纳入统计。
1.3 统计学方法
应用SPSS 20.0软件进行统计学分析,所得计量资料数据以[AKx-D]±s形式表示,采用单因素方差分析(one-way ANOVA)进行检验。以P<0.05为差异有统计学意义。
2 结 果
2.1低糖血症对LPBN中Nesfatin-1与c-fos共表达的影响
与对照组相比较,胰岛素组大鼠腹腔注射胰岛素后15、30、60、90、120 min时的血糖水平明显降低(t=8.450~16.130,P<0.05)。见表1。胰岛素组大鼠LPBN的Nesfatin-1阳性神经元与c-fos免疫阳性神经元共表达明显高于对照组(10.4±1.7 vs 6.9±3.2;t=3.044,P<0.05)。
2.2LPBN注射Nesfatin-1對低糖血症的影响
LPBN给药后90、120 min时,低剂量胰岛素+Nesfatin-1组血糖水平明显高于低剂量胰岛素+NS组(t=2.433、3.045,P<0.05);LPBN给药后30、60 min时,高剂量胰岛素+Nesfatin-1组血糖水平明显高于高剂量胰岛素+NS组(t=2.967、3.546,P<0.05);LPBN给药后30 min时,高剂量胰岛素+Nesfatin-1组大鼠血糖水平明显高于低剂量胰岛素+Nesfatin-1组(t=4.363,P<0.01)。见表2。
3 讨 论
位于脑桥的LPBN是连接前脑(下丘脑)和后脑(脑干)的中继核团,主要负责能量平衡相关信号的上传下达[19-20]。健康群体低糖血症时,可以通过神经-体液机制激活CRR,维持糖代谢的稳态:一方面通过刺激交感神经[21],产生觉醒、饥饿、心悸、震颤、出汗等症状;另一方面可通过增加血浆中升糖激素(胰高血糖素、皮质醇和肾上腺素)的水平和减少胰岛素的分泌,增加肝脏的糖原分解和糖异生,共同维持血糖稳态[22]。然而这些生理调节在1型糖尿病病人中常常减弱或消失[23]。而严重低糖血症可以导致脑细胞不可逆性损害、心律失常、急性心肌梗死甚至死亡[24]。因此,预防低糖血症的发生成为糖尿病病人治疗过程中最重要的环节之一。
脑桥LPBN已被证实参与CRR调节,并且无论是外周低糖血症还是中枢低糖血症均可激活下丘脑Nesfatin-1阳性神经元[11]。但是Nesfatin-1能否作用于LPBN增强CRR的研究仍为空白。本实验主要探究了LPBN中Nesfatin-1对于CRR的作用,结果显示,低糖血症可激活LPBN中Nesfatin-1阳性神经元,提示在LPBN中Nesfatin-1可以参与CRR,并且LPBN注射Nesfatin-1可明显改善腹腔注射不同剂量胰岛素所致低糖血症状态,但是Nesfatin-1并不能完全逆转高剂量胰岛素(15 U/kg)所
致严重低糖血症。现普遍认为,葡萄糖敏感性神经
元在CRR中起关键作用[25]。该类神经元能够感受细胞外葡萄糖浓度的波动,依据其对不同浓度葡萄糖的反应性可分为葡萄糖兴奋性神经元(GE神经元)和葡萄糖抑制性神经元(GI神经元)[26]。GI神经元是感受低糖血症状态重要神经元,在葡萄糖缺乏时其放电频率增加,下丘脑和脑干等的多个脑区(如PVN、ARC、VMH、DVC及LPBN)内的GI神经元均可直接感受低糖血症刺激[12,14,17]。新近研究显示,通过改善VMH中GI神经元对低糖血症的敏感性,可改善CRR[27],提示改善GI神经元对低糖血症敏感性是防治CRR受损的重要机制之一。本实验中LPBN注射Nesfatin-1后30 min,高剂量胰岛素+Nesfatin-1组血糖水平明显高于低剂量胰岛素+Nesfatin-1组,而其他时点两组比较差异无显著性。这可能是由于腹腔注射高剂量胰岛素后,血糖迅速下降,GI神经元及时接收到血糖降低的信号使血糖水平升高,但是在腹腔注射胰岛素90 min以后,胰岛素持续发挥降血糖作用并且该作用强于Nesfatin-1升血糖的作用;而腹腔注射低剂量胰岛素时,只有血糖持续降低到一定水平(本实验结果显示是在90 min时)Nesfatin-1才发挥作用。本课题组前期实验结果显示,PVN、LHA、VMH和DVC微量注射Nesfatin-1可显著提高GI神经元的兴奋性[14,17]。2014年,GARFIELD等[12]证实LPBN中的CCK神经元参与CRR。本课题组最新研究表明,Nesfatin-1能够提高LPBN中GI神经元的放电频率[13]。本实验结果显示,低糖血症可激活LPBN中的Nesfatin-1阳性神经元。通过LPBN微量注射Nesfatin-1进一步研究表明,Nesfatin-1可以增强CRR,但是Nesfatin-1并不能完全逆转高剂量胰岛素造成的严重低糖血症状态。鉴于中枢神经系统中葡萄糖敏感性神经元与CRR的密切联系,我们认为Nesfatin-1可能通过影响LPBN中葡萄糖敏感性神经元的兴奋性增强CRR这一过程。由于本实验纳入的大鼠数目较少,加之Nesfatin-1受体至今未明确,这在一定程度上限制了我们对Nesfatin-1参与CRR机制的探讨。同时,本实验也缺乏直接的电生理证据表明Nesfatin-1可以影响低糖血症条件下LPBN中GI神经元的放电频率。
综上所述,低糖血症可激活LPBN中的Nesfatin-1阳性神经元,并且LPBN注射Nesfatin-1可以增强CRR,这可能是通过增强GI神经元的敏感性
实现的。本文结果为进一步探究LPBN中Nesfa-tin-1防治糖尿病病人低血糖症等相关并发症提供了一定的实验参考。
[参考文献]
[1]OH I S, SHIMIZU H, SATOH T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus[J]. Nature, 2006,443(7112):709-712.
[2]WERNECKE K, LAMPRECHT I, JOEHREN O, et al. Nesfatin-1 increases energy expenditure and reduces food intake in rats[J]. Experimental and Clinical Endocrinology & Diabetes, 2014,122(3):1662-1668.
[3]SU Yijing, ZHANG Jing, TANG Yanchun, et al. The novel function of nesfatin-1: anti-hyperglycemia[J]. Biochemical and Biophysical Research Communications, 2010,391(1):1039-1042.
[4]BUTLER A A. More news about NUCB2/nesfatin-1: a new factor in the hypothalamic control of glucose homeostasis[J]? Diabetes, 2012,61(8):1920-1922.
[5]AYADA C, TORU U, KORKUT Y. Nesfatin-1 and its effects on different systems[J]. Hippokratia, 2015,19(1):4-10.
[6]KOHNO D, NAKATA M, MAEJIMA Y, et al. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding[J]. Endocrinology, 2008,149(3):1295-1301.
[7]MORTON K A, HARGREAVES L, MORTAZAVI S, et al. Tissue-specific expression and circulating concentrations of nesfatin-1 in domestic animals[J]. Domestic Animal Endocrinology, 2018,65:56-66.
[8]GOEBEL M, STENGEL A, WANG L, et al. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei[J]. Neuroscience Letters, 2009,452(3):241-246.
[9]GOEBEL-STENGEL M, WANG L X, STENGEL A, et al. Localization of nesfatin-1 neurons in the mouse brain and functional implication[J]. Brain Research, 2011,1396:20-34.
[10]ZHAI Ting, LI Shizhen, FAN Xintong, et al. Circulating nesfatin-1 levels and type 2 diabetes: a systematic review and Meta-analysis[J]. Journal of Diabetes Research, 2017, 2017:7687098.
[11]BONNET M S, DJELLOUL M, TILLEMENT V, et al. Central NUCB2/nesfatin-1-expressing neurones belong to the hypothalamic-brainstem circuitry activated by hypoglycaemia[J]. Journal of Neuroendocrinology, 2013,25(1):1-13.
[12]GARFIELD A S, SHAH B P, MADARA J C, et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia[J]. Cell Metabolism, 2014,20(6):1030-1037.
[13]YUAN Junhua, CHEN Xi, DONG Jing, et al. Nesfatin-1 in the lateral parabrachial nucleus inhibits food intake, modulates excitability of glucosensing neurons, and enhances UCP1 expression in brown adipose tissue[J]. Frontiers in Physiology, 2017,8:235.
[14]DONG Jing, GUAN Hongzai, JIANG Zhengyao, et al. Nesfatin-1 influences the excitability of glucosensing neurons in the dorsal vagal complex and inhibits food intake[J]. PLoS One, 2014,9(6):e98967.
[15]KHAZIPOV R, ZAYNUTDINOVA D, OGIEVETSKY E A, et al. Atlas of the postnatal rat brain in stereotaxic coordinates[J]. Frontiers in Neuroanatomy, 2015,9:161.
[16]YANG Pengfei, WANG Zhenzhen, ZHANG Zhao, et al. The extended application of the rat brain in stereotaxic coordinates in rats of various body weight[J]. Journal of Neuroscience
Methods, 2018,307:60-69.
[17]CHEN Xi, DONG Jing, JIANG Zhengyao. Nesfatin-1 inf-luences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake[J]. Regulatory Peptides, 2012,177(1/3):21-26.
[18]CHEN Xi, SHU Xin, CONG Zhukai, et al. Nesfatin-1 acts on the dopaminergic reward pathway to inhibit food intake[J]. Neuropeptides, 2015,53:45-50.
[19]CARTER M E, SODEN M E, ZWEIFEL L S, et al. Genetic identification of a neural circuit that suppresses appetite[J]. Nature, 2013,503(7474):111-114.
[20]WU Q, CLARK M S, PALMITER R D. Deciphering a neuronal circuit that mediates appetite[J]. Nature, 2012,483(7391):594-597.
[21]JOKIAHO A J, DONOVAN C M, WATTS A G. The rate of fall of blood glucose determines the necessity of forebrain-projecting catecholaminergic neurons for male rat sympathoadrenal responses[J]. Diabetes, 2014,63(8):2854-2865.
[22]SPRAGUE J E, ARBELAEZ A M. Glucose counterregulatory responses to hypoglycemia[J]. Pediatric Endocrinology Reviews: PER, 2011,9(1):463-473.
[23]UMPIERREZ G, KORYTKOWSKI M. Diabetic emergencies-ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia[J]. Nature Reviews Endocrinology, 2016,12(4):222-232.
[24]AWONIYI O, REHMAN R, DAGOGO-JACK S. Hypoglycemia in patients with type 1 diabetes: epidemiology, pathogenesis, and prevention[J]. Current Diabetes Reports, 2013,13(5):669-678.
[25]ROUTH V H. Glucose-sensing neurons: are they physiologically relevant [J]? Physiology & Behavior, 2002,76(3):403-413.
[26]CRYER P E. Elimination of hypoglycemia from the lives of people affected by diabetes[J]. Diabetes, 2011,60(1):24-27.
[27]ZHOU C, ROUTH V H. Thioredoxin-1 overexpression in the ventromedial nucleus of the hypothalamus preserves the counterregulatory response to hypoglycemia during type 1 diabetes in male rats[J]. Diabetes, 2018,67(1):120-130.