4-AP对MPTP诱导PD模型小鼠运动行为影响
2019-09-10贾璐石丽敏谢俊霞
贾璐 石丽敏 谢俊霞
[摘要] 目的 探讨A型钾通道抑制剂4-氨基吡啶(4-AP)对l-甲基4苯基-1,2,3,6-四氢吡啶(MPTP)诱导的帕金森病(PD)模型小鼠运动行为的影响。
方法8周龄雄性C57BL/6小鼠30只,随机分为对照组、MPTP组以及4-AP+MPTP组,每组10只。采用连续5 d腹腔注射MPTP(30 mg·kg-1·d-1)的方法制备PD小鼠模型。4-AP+MPTP组在每天注射MPTP前30 min腹腔注射4-AP(1 mg·kg-1·d-1),对照组以等量生理盐水代替MPTP和4-AP。连续5 d注射后进行爬杆实验检测。
结果MPTP组小鼠爬杆实验的转头时间和爬杆时间明显长于对照组,而4-AP+MPTP组小鼠转头时间和爬杆时间较MPTP组明显缩短,差异均有显著意义(F=32.26、25.53,P<0.01)。
结论4-AP可使MPTP诱导的PD模型小鼠运动协调能力有所改善。
[关键词] 4-氨基吡啶;l-甲基4苯基-1,2,3,6-四氢吡啶;帕金森病;运动障碍
[中图分类号] R742.5;R971.8
[文献标志码] A
[文章编号] 2096-5532(2019)01-0044-03
EFFECT OF 4-AP ON MOTOR BEHAVIOR IN MPTP MOUSE MODEL OF PARKINSONS DISEASE
JIA Lu, SHI Limin, XIE Junxia
(Department of Physiology, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of 4-aminopyridine (4-AP), an inhibitor of A-type potassium channel, on motor behavior in mice with Parkinsons disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
MethodsThirty 8-week-old male C57BL/6 mice were randomly divided into MPTP group, 4-AP+MPTP group, and control group, with 10 mice per group. The mice in the MPTP group and 4-AP+MPTP group received intraperitoneal injection of MPTP (30 mg·kg-1·d-1) for 5 consecutive days to establish a mouse model of PD; in addition, the mice in the 4-AP+MPTP group were intraperitoneally injected with 4-AP (1 mg·kg-1·d-1) 30 min before the daily injection of MPTP. As for the control group, MPTP and 4-AP were replaced by an equal volume of normal saline. The pole test was performed after 5 consecutive days of injection.
ResultsThe time to turn around and time to reach the floor in the MPTP group were significantly longer than those in the control group, while they were significantly shortened in the 4-AP+MPTP group compared with the MPTP group (F=32.26 and 25.53,P<0.01).
ConclusionInhibition of A-type potassium channel by 4-AP may attenuate motor coordination dysfunction in mice with MPTP-induced PD.
[KEY WORDS]4-aminopyridine; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Parkinson disease; motor disorders
帕金森病(PD)又称震颤麻痹,是常见的神经退行性疾病。其病理特征主要是中脑黑质多巴胺能神经元的变性缺失,纹状体多巴胺含量减少[1]。PD的病因及发病机制尚未完全明确,可能与遗传、环境、氧化应激、铁沉积、自身免疫、细胞凋亡等因素相关[2-9]。目前使用的1-二羟基苯丙氨酸、多巴胺前体和多巴胺激动剂等疗法在改善PD运动损伤方面仅取得了有限的成功。因此,寻找疗效可靠、不良反应少的PD治疗藥物是亟待解决的重要问题[10]。近年来研究表明,PD的发病可能与钾离子通道的功能异常相关,因而PD也被认为是一种“离子通道病”[11-15]。以钾离子通道为靶点的PD治疗思路已成为目前该病治疗研究领域中的一个重要的探索方向。A型钾通道是电压依赖性钾离子通道的重要分支,在控制神经元的兴奋性和神经递质的释放等方面发挥重要作用[12]。以往研究结果表明,A型钾通道特异性阻断剂4-氨基吡啶(4-AP)能够增强黑质多巴胺能神经元的兴奋性[16-17]。本实验选用经典神经毒素1-甲基-4-苯基-1,2,3,6四氢吡啶(MPTP)制备PD小鼠模型,通过爬杆实验进一步评价4-AP对PD模型小鼠运动行为的影响。
1 材料與方法
1.1 动物及分组
[CM(20]SPF级8周龄雄性C57BL/6小鼠30只,体质量(20±2)g,由常州卡文斯实验动物有限公司提供,许可证号为SCXK(苏)2016-0010。小鼠于20 ℃、昼夜循环光照条件下饲养,可自由摄食、饮水、活动。实验前让其适应环境1周。将小鼠随机分为对照组(A组)、MPTP组(B组)和4-AP+MPTP组(C组),每组10只。
1.2 给药方法
各组小鼠均给予连续5 d腹腔注射,MPTP组腹腔注射MPTP(购自美国Sigma公司)30 mg·kg-1·d-1,4-AP+MPTP组在每天注射MPTP前30 min腹腔注射4-AP(购自英国TOCRIS公司)1 mg·kg-1·d-1,对照组则以等量生理盐水代替MPTP和4-AP。
1.3 爬杆实验
制作一根直径1 cm、长50 cm 的杆,在其顶端固定一个直径为1.5 cm 小球,顶端小球缠上纱布以增加摩擦力,将杆竖直放置在一个方形的塑料盆中。实验开始时,将小鼠头放置在小球上,记录小鼠从开始运动到完全转为头向下的时间(转头时间)和爬杆时间。每只小鼠进行3次实验,取平均值[18]。
1.4 统计学处理
应用GraphPad Prism 5软件进行统计分析,所得计量数据以[AKx-D]±s表示,多组比较采用One-way ANOVA检验,以Turkey法进行组间两两比较。以P<0.05表示差异有统计学意义。
2 结 果
MPTP组小鼠爬杆实验的转头时间和爬杆时间明显长于对照组,而4-AP+MPTP组小鼠转头时间和爬杆时间较MPTP组明显缩短,差异均有显著性(F=32.26、25.53,P<0.01)。表明MPTP组小鼠的运动协调能力严重受损,给予4-AP预处理则改善了小鼠的运动协调能力。见表1。
3 讨 论
A型钾通道又称为瞬时外向型钾通道,是一种电压依赖型钾通道,在黑质多巴胺能神经元上广泛表达,具有较大的电流幅度(从数百pA到15 nA左右)。在哺乳类动物中枢神经系统中,A型钾通道主要由Kv4基因家族形成的α亚基以及KChip基因
家族形成的辅助β亚基共同组成,其中Kv4基因家族包括KCND1、KCND2和KCND3,KChip家族包括KChip1、KChip2、KChip3和KChip4[19-21]。
Kv4.3/KChip3.1是A型钾通道在黑质多巴胺能神经元上的主要组成部分[22]。以往研究结果证实,A型钾通道对动作电位的幅度、动作电位时程发挥着重要的精细调节作用,阻断该通道则可以明显提高多巴胺能神经元的放电频率[16-17]。由于纹状体区多巴胺的释放可被黑质多巴胺能神经元的电活动变化直接影响,A型钾通道的阻断剂可以通过抑制IA提高神经元的兴奋性,增加多巴胺的含量[23]。因此,4-AP可能通过调控中脑黑质神经元的电活动,改善黑质纹状体系统的功能,从而有效缓解PD运动功能障碍。
本实验采用连续5 d腹腔注射MPTP方法制备亚急性PD小鼠模型。MPTP是一种神经毒素,极易通过血-脑脊液屏障,具有强脂溶性。MPTP本身没有毒性,进入脑内后,在线粒体内单胺氧化酶作用下转变为MPP+,随后,多巴胺能神经元通过细胞膜上的多巴胺转运体特异性摄取MPP+,细胞内游离的MPP+通过耗能的主动转运方式进入线粒体与呼吸链的复合物结合,阻断线粒体电子传递系统,导致能量代谢障碍和自由基的生成增加,最终导致细胞死亡[24]。除上述氧化应激、线粒体功能损伤等毒性机制外,近期研究还显示MPP+可以降低黑质多巴胺能神经元的兴奋性,减少细胞的自发放电[25-26]。由于神经元兴奋性的变化与多巴胺递质的含量以及运动功能密切相关,因此本研究首先观察了MPTP制备的PD小鼠模型运动行为的变化。本文研究结果显示,腹腔注射MPTP使小鼠运动能力明显降低,出现与PD病人类似的肌张力增高、运动迟缓等表现,在爬杆实验中的转头时间和爬杆时间明显延长。而给予4-AP预处理组小鼠的转头时间和爬杆时间较MPTP组明显缩短,表明4-AP预处理能明显改善MPTP诱导的PD小鼠运动功能障碍。推测其机制可能是由于4-AP抑制了A型钾通道,提高了多巴胺能神经元的兴奋性,进而增加了纹状体多巴胺的含量,使PD模型小鼠的运动障碍症状得到改善。本实验为进一步深入研究钾离子通道在PD中的作用提供了一定的实验依据。
[参考文献]
[1]CHEN Leilei, XIE Junxia. Dopamine in Parkinsons disease:precise supplementation with motor planning[J]. Neuroscience Bulletin, 2018,34(5):873-874.
[2]FLEMING S M. Mechanisms of gene-environment interactions in Parkinsons disease[J]. Current Environmental Health Reports, 2017,4(2):192-199.
[3]XU Huamin, LIU Xiaodong, XIA Jianjian, et al. Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinsons disease[J]. FASEB Journal, 2018,32(11):6100-6111.
[4]SONG Ning, XIE Junxia. Iron, dopamine, and alpha-synuc-lein interactions in at-risk dopaminergic neurons in Parkinsons disease[J]. Neuroscience Bulletin, 2018,34(2):382-384.
[5]DE BAAT C, VAN STIPHOUT M E, LOBBEZOO F, et al. Parkinsons disease:pathogenesis, aetiology, symptoms, diagnostics, and its course[J]. Nederlands Tijdschrift Voor Tandheelkunde, 2018,125(10):509-515.
[6]RAMPRASAD C, DOUGLAS J Y, MOSHIREE B. Parkinsons disease and current treatments for its gastrointestinal neurogastromotility effects[J]. Current Treatment Options in Gastroenterology, 2018,16(4):489-510.
[7]GRUNEWALD A, KUMAR K R, SUE C M. New insights into the complex role of mitochondria in Parkinsons disease[J]. Progress in Neurobiology, 2018. doi:10.1016/j.pneurobio.2018.09.003.
[8]RADI E, FORMICHI P, BATTISTI C, et al. Apoptosis and oxidative stress in neurodegenerative diseases[J]. Journal of Alzheimers Disease, 2014,42(3):S125-S152.
[9]JIANG Tianfang, LI Gen, XU Jun, et al. The challenge of the pathogenesis of Parkinsons disease:is autoimmunity the culprit[J]? Frontiers in Immunology, 2018,9:02047.
[10]CHARVIN D, MEDORI R, HAUSER R A, et al. Therapeutic strategies for Parkinson disease:beyond dopaminergic drugs[J]. Nature Reviews Drug Discovery, 2018. doi:10.1038/nrd.2018.184.
[11]WANG Gang, ZENG Jie, REN Rujing, et al. Potassium channels in the basal ganglia:promising new targets for the treatment of Parkinsons disease[J]. Frontiers in Bioscience:a Journal and Virtual Library, 2008,13:3685-3698.
[12]CHEN Xiaoyan, XUE Bao, WANG Jun, et al. Potassium channels:a potential therapeutic target for Parkinsons disease[J]. Neuroscience Bulletin, 2018,34(2):341-348.
[13]WANG Yan, YANG Penglin, TANG Jifei, et al. Potassium channels:possible new therapeutic targets in Parkinsons di-sease[J]. Medical Hypotheses, 2008,71(4):546-550.
[14]劉海霞,陈小燕,薛宝,等. XE991对6-OHDA诱导帕金森病模型大鼠运动行为影响[J]. 青岛大学医学院学报, 2017,53(1):5-7,11.
[15]DUDA J, POETSCHKE C, LISS B. Converging roles of iron channels, calcium, metabolic stress, and activity pattern of substantia nigra dopaminergic neurons in health and Parkinsons disease[J]. Journal of Neurochemistry, 2016,139(1):156-178.
[16]SEGEV D, KORNGREEN A. Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons[J]. Brain Research, 2007,1173:27-35.
[17]KUZNETSOVA A Y, HUERTAS M A, KUZNETSOV A S, et al. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron[J]. Journal of Computational Neuroscience, 2010,28(3):389-403.
[18]樊開阳,朱丽娜,张文利,等. MPTP诱导小鼠帕金森病亚急性模型和慢性模型的比较[J]. 中国老年学杂志, 2017,37(1):4-6.
[19]TANG Yiquan, ZHOU Jingheng, YANG Fan, et al. The tetramerization domain potentiates Kv4 channel function by suppressing closed-state inactivation[J]. Biophysical Journal, 2014,107(5):1090-1104.
[20]ZEMEL B M, RITTER D M, COVARRUBIAS M, et al. A-type KV channels in dorsal root ganglion neurons:diversity, function, and dysfunction[J]. Frontiers in Molecular Neuroscience, 2018,11:253.
[21]薛宝,常晓丽,贾璐,等. Ghrelin抑制A型钾通道电流对小鼠黑质多巴胺能神经元兴奋性的影响[J]. 青岛大学学报(医学版), 2018,54(2):127-129,133.
[22]DUFOUR M A, WOODHOUSE A, GOAILLARD J M. So-matodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development[J]. Journal of Neuroscience Research, 2014,92(8):981-999.
[23]AIDI-KNANI S, REGAYA I, AMALRIC M, et al. Kv4 channel blockade reduces motor and neuropsychiatric symptoms in rodent models of Parkinsons disease[J]. Behavioural Pharmacology, 2015,26(1/2, SI):91-100.
[24]SCHILDKNECHT S, DI MONTE D A, PAPE R, et al. Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP[J]. Trends in Pharmacological Sciences, 2017,38(6):541-555.
[25]MASI A, NARDUCCI R, LANDUCCI E, et al. MPP+-dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons[J]. British Journal of Pharmacology, 2013,169(1):130-142.
[26]YEE A G, LEE S M, HUNTER M R, et al. Effects of the parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons[J]. NeuroToxicology, 2014,45(45):1-11.