APP下载

考虑车桥间气动干扰的桥上车辆行驶安全性分析

2019-08-30韩艳刘叶黄静文蔡春声

湖南大学学报·自然科学版 2019年7期
关键词:桥梁工程

韩艳 刘叶 黄静文 蔡春声

摘   要:為了研究车桥间气动干扰对桥上车辆行驶的影响,以重庆太洪长江大桥为研究背景,针对厢式货车和小轿车2种车型,对强风作用下车桥的动力响应和车辆的行车安全性进行了分析. 首先基于风-车-桥耦合整体分析系统,分别获得考虑与不考虑车桥间气动干扰两种情况下车辆的竖向、俯仰、侧倾加速度响应以及桥梁侧向加速度响应,将获得的加速度响应导入MATLAB所编制的局部事故分析程序中,获得车辆侧滑位移和每个车轮反力比,根据行车事故判定准则,判断车辆是否发生事故;然后通过逐级增加车速和风速,得到了2种车型在不同车速下的临界风速. 研究结果表明:考虑车桥间气动干扰对车辆动力响应影响较大,从而对桥上车辆行驶安全性影响显著,不考虑车桥间气动干扰的行车安全性分析结果偏保守,此外,考虑车桥间气动干扰还影响车辆在桥上行驶时发生的事故类型. 研究结果为强风气象条件下大跨度桥梁的运营安全和科学管理提供了合理的理论参考和数据支撑.

关键词:桥梁工程;风-车-桥系统;气动干扰;行车安全性分析;临界风速

中图分类号:U442                                   文献标志码:A

Abstract:In order to investigate the effect of aerodynamic interaction between vehicles and a bridge on the driving safety of vehicles on a bridge, the Taihong Yangtze River Bridge of Chongqing in China was taken as an example, and the driving safety of vehicles and dynamic responses of vehicles and the bridge under strong wind were investigated for the two typical types of vehicles——a van and a car. Firstly, based on the wind-vehicle-bridge coupling analysis system, the vertical, pitching and rolling accelerations of the vehicles, and the lateral acceleration of the bridge were calculated with and without consideration of the aerodynamic interference between the vehicles and bridge. Then, these acceleration responses of the vehicles and bridge were applied to the local accident analysis program built by MATLAB. The sideslip displacement and the reaction force ratio of each wheel of the vehicles were calculated. The accidents of the vehicles were assessed by comparing the calculated responses of the vehicles with the accident criteria. Further, the accident critical wind speeds of the vehicles at different traveling speeds were obtained by gradually increasing the traveling speed and wind speed, and the curves of the accident critical wind speed versus the traveling speed for the two types of vehicles with and without consideration of the aerodynamic interference were plotted. The results show that the aerodynamic interference between the vehicles and the bridge has a significant influence on the driving safety of vehicles on the bridge. The assess results are relatively conservative if the aerodynamic interference between the vehicles and bridge is not considered. In addition, the aerodynamic interference also affects the vehicle accident type. This paper can provide a reasonable theoretical reference and data support for the operation safety and scientific management of long-span bridges under strong wind weather conditions.

Key words:bridge engineering;wind-vehicle-bridge system;aerodynamic interaction;driving safety analysis;critical wind speed

我国公路交通进入跨海连岛时代,长大桥梁增多,此类桥梁桥址处的风荷载往往都比较大,车辆在桥面上通行的安全性问题比在道路上更加突出,合理评估桥上车辆行驶安全性是确保大桥安全、经济运营的保障. 而准确预测桥上车辆的安全性不仅需要准确模拟风-车-桥间相互耦合作用还要准确模拟风-车-桥间的相互气动干扰. 过去国内外学者对车辆在桥面上通行的事故分析进行了大量研究并取得了丰富的研究成果. Cai和Chen[1-2]将驾驶员行为引入到风-汽车-桥梁耦合分析中,以整体分析和局部分析相结合的方式得到车辆侧滑位移、偏转位移和车轮反力,以此来判断车辆的行车安全性. 庞加斌等[3]在考虑车速、车型、风速和路面等条件,分析了4种典型车辆的安全行车临界风速,建立了桥面行车高度的等效风速概率模型,提出了概率评估方法. Guo[4]和韩万水等[5]为能直接计算车辆侧滑位移,将车辆模型中轮胎与路面接触点定义一个独立的侧向自由度,轮胎的摩擦力表达为轮胎竖向力和侧滑速率的函数,通过风-车-桥分析计算轮胎侧滑位移,以位移量作为车辆事故判断标准. 马麟[6]研究了考虑汽车运动时坐标转动特性的驾驶员行为模型和桥面车轮侧滑力模型,建立了考虑驾驶员行为的风-车-桥系统空间耦合振动分析框架及求解策略. 李永乐等[7]针对车辆侧倾事故和侧滑事故的评判准则,采用概率统计方法提高了风致车辆事故分析的可靠性. 殷新锋等[8]综合考虑了车流随机性和路面等级退化等因素,分析了大跨度桥梁的振动及行车舒适性.研究表明驾驶员座椅模型的各向振动可显著影响行车舒适度. 虽然国内外学者均建立了准确的车桥模型,但是其车辆气动力荷载直接采用Baker[9-10]的经验公式,没有考虑车桥间的气动影响. 近年来韩艳等[11-14]采用数值计算和风洞试验方法对风-车-桥耦合系统的车辆和桥梁气动特性进行了研究,研究结果发现,车辆和桥梁间的相互气动干扰对车辆和桥梁的气动力有较大的影响. 韩艳等[15]研究了桥梁抖振力空间相关性对侧风作用下桥梁和车辆耦合动力响应的影响,研究结果表明:桥梁抖振力空间相关性对桥梁动力响应有显著影响,对车辆的动力响应也有一定的影响. 韩万水等[16]研究了气动干扰下大跨度斜拉桥动力响应和车辆安全性,结果分析表明气动干扰对桥梁动力响应和车辆安全性影响显著,但其只考虑了一种车型. 由此可见,非常有必要研究车桥间气动干扰对不同车型的桥上行驶安全性的影響.

鉴于以上研究现状,本文以重庆太洪长江大桥为工程背景,基于以前的车桥系统气动特性研究基础,利用自编的风-车-桥耦合振动程序分别计算分析了不同车型下考虑与不考虑车桥间气动干扰的车桥动力响应,基于车辆事故分析模型编制车辆行车安全性评估程序,将风-车-桥耦合振动的车辆动力响应结果作为激励输入,分析研究了考虑车桥间气动干扰对桥上车辆行驶安全性的影响.

1   考虑车桥间气动干扰的桥上车辆行驶安

全性分析方法

1.1   风-车-桥耦合振动

1.2   考虑桥梁气动影响的车辆气动力系数

本文主要分析小轿车和厢式货车在桥梁上的行驶安全性,图1、图2分别为2种车型考虑桥梁与不考虑气动影响的气动力系数随着风偏角的变化情况. 本文旨在研究考虑车桥间气动干扰对桥上行车安全性研究,在研究车辆气动力时没有考虑栏杆和风屏障的影响. 厢式货车考虑气动相互影响的气动力系数参考文献[11],小轿车考虑气动相互影响的气动力系数参考文献[17],2种车型的气动参数虽然取自不同文献,但是两文献中的桥梁断面均为流线型断面型式,与本文桥梁断面的型式类似,作者前期研究[13]发现桥梁断面的局部细微变化对车辆气动力系数影响很小. 厢式货车和小轿车不考虑气动相互影响的气动力系数根据韩万水试验结果[5], 其研究中采用的车型与文献[11]和文献[17]相同.

从图1和图2可以看出,考虑与不考虑车桥气动干扰的结果相差较大,说明桥梁对车辆气动力系数影响较大,因此进行桥上车辆行驶安全性分析时有必要考虑桥梁对车辆的气动影响.

1.3   车辆事故分析模型及评判标准

参考Chen等[2]提出的车辆事故分析模型,如图3所示,假定车轮和桥面“密贴”. 将风-车-桥耦合振动整体分析计算得到的车辆竖向、侧倾方向、俯仰方向和桥梁侧向的动力响应用到车辆事故分析模型中,从而计算出车辆侧滑位移和车轮反力.

3   结   论

本文基于车桥系统气动特性研究基础,以重庆太洪长江大桥为研究背景,编制了考虑车桥气动影响的车辆安全行驶评估程序,分析研究了考虑车桥气动影响对桥上车辆行驶安全性的影响,得到了以下研究结论:

1)不论是对于小轿车还是厢式货车,考虑车桥气动干扰的临界风速均大于不考虑车桥气动干扰的临界风速,而且差值几乎均超过10 m/s. 因此,桥上车辆行驶安全性分析时如果不考虑车桥气动影响会使评估结果偏保守,不利于大桥的合理经济管理.

2)车桥间气动干扰不仅会影响车辆行驶的临界风速,还会影响车辆发生安全事故的类型.

总之,对于文中类似的流线型桥梁断面,考虑车桥间气动干扰可以更全面地分析桥梁上的车辆事故发生,能让相关部门采取更合理的措施来应对强风情况,在强风条件能够做出更合适的应急措施和疏散计划.

参考文献

[1]    CAI C S,CHEN S R. Framework of vehicle-bridge-wind dynamic analysis[J]. Journal of Wind Engineering & Industrial Aerodynamics,2004,92(7/8): 579—607.

[2]    CHEN S R,CAI C S. Accident assessment of vehicles on long-span bridges in windy environments[J]. Journal of Wind Engineering & Industrial Aerodynamics,2004,92(12):991—1024.

[3]    庞加斌,王达磊,陈艾荣,等.  桥面侧风对行车安全性影响的概率评价方法[J]. 中国公路学报,2006,19(4):59—64.

PANG J B,WANG D L,CHEN A R,et al. Probability evaluating method of bridge deck side wind effects on driving safety[J]. China Journal of Highway and Transport,2006,19(4):59—64. (In Chinese)

[4]    XU Y L,GUO W H. Safety analysis of moving road vehicles on a long bridge under crosswind[J]. Journal of Engineering Mechanics,2006,132(4):438—446.

[5]    韩万水,陈艾荣. 风-汽车-桥梁系统空间耦合振动研究[J]. 土木工程学报,2007,40(9):53—58.

HAN W S,CHEN A R. Three-dimensional coupling vibration of wind-vehicle-bridge systems[J]. China Civil Engineering Journal,2007,40(9):53—58. (In Chinese)

[6]    马麟. 考虑驾驶员行为的风-汽车-桥梁系统空间耦合振动研究[D]. 西安:长安大学桥梁工程系,2008:28—54.

MA L.  Three-dimensional coupled vibration of wind-vehicle-bridge system considering driver′s behavior[D]. Xi′an: Department of Bridge Engineering,Chang′an University,2008:28—54. (In Chinese)

[7]    李永乐,赵凯,陈宁,等. 风-汽车-桥梁系统耦合振动及行车安全性分析[J]. 工程力学,2012,29(5): 206—212.

LI Y L,ZHAO K,CHEN N,et al. Wind-vehicle-bridge system coupling vibration and traffic safety analysis[J]. Engineering Mechanics,2012,29(5):206—212. (In Chinese)

[8]    殷新锋,丰锦铭,杨小旺,等. 风与车流联合作用下在役桥行车舒适性研究[J]. 湖南大学学报(自然科学版),2016,43(1):46—52.

YIN X F,FENG J M,YANG X W,et al. Ride comfort of existing bridges under combined loada of traffic and wind[J]. Journal of Hunan University (Natural Sciences),2016,43(1): 46—52. (In Chinese)

[9]    BAKER C J.  The quantification of accident risk for road vehicles in cross winds[J]. Journal of Wind Engineering & Industrial Aerodynamics,1994,94: 93—107.

[10]  BAKER C J. Measures to control vehicle movement at exposed sites during windy periods[J]. Journal of Wind Engineering& Industrial Aerodynamics,1987,25(2): 151—161.

[11]  韓艳,胡揭玄,蔡春声,等. 横风下车桥系统气动特性的风洞试验研究[J]. 振动工程学报,2014,27(1): 67—74.

HAN Y,HU J X,CAI C S,et al. Wind tunnel measurement on aerodynamic characteristics of vehicles and bridges under cross winds[J]. Journal of Vibration Engineering,2014,27(1):67—74. (In Chinese)

[12]  韩艳,胡揭玄,蔡春声,等. 横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究[J]. 工程力学,2013,30(2): 318—325.

HAN Y,HU J X,CAI C S,et al. Numerial simulation aerodynamic characteristics of vehicle and bridge under cross winds with the consideration of vehicle moving[J]. Engineering Mechanics,2013,30(2):318—325. (In Chinese)

[13]  韩艳,陈浩,沈炼,等. 气动力参数对风-车-桥系统耦合动力响应的影响[J]. 中国公路学报,2015,28(9):57—66.

HAN Y,CHEN H,SHEN L,et al. Effect of aerodynamic parameters on coupled dynamic responses of wind-vehicle-bridge system[J].China Journal of Highway and Transport,2015,28(9):57—66.(In Chinese)

[14]  HAN Y,CAI C S,ZHANG J,et al. Effects of aerodynamic parameters on the dynamic responses of road vehicles and bridges under cross winds[J].Journal of Wind Engineering & Industrial Aerodynamics,2014,134:78—95.

[15]  韩艳,陈浩,刘跃飞,等. 桥梁抖振力空间相关性对风-车-桥耦合动力响应的影响[J]. 湖南大学学报(自然科学版),2015,42(9):83—88.

HAN Y,CHEN H,LIU Y F,et al. Effect of the coherence of buffeting forces of bridges on the coupled dynamic responses of wind-vehicle-bridge system[J]. Journal of Hunan University(Natural Sciences),2015,42(9):83—88.(In Chinese)

[16]  HAN W S,LIU H J,WU J,et al. Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerody-namic coefficients considering aerodynamic interference[J]. Wind & Structures an International Journal,2017,24(5):405—430.

[17]  陈浩.侧风作用下桥梁和车辆气动参数数值模拟研究[D]. 长沙:长沙理工大学土木与建筑学院,2017:48—52.

CHEN H. Numerical simulation on aerodynamic characteristics of vehicle and bridge under cross wind[D]. Changsha: School of Civil Engineering,Changsha University of Science & Technology,2017:48—52.(In Chinese)

[18]  BAKER C J. A simplified analysis of various types of wind-induced road vehicle accidents[J]. Journal of Wind Engineering & Industrial Aerodynamics,1986,22(1):69—85.

[19]  BAKER C J. Ground vehicles in high cross winds part I: Steady aerodynamic forces[J]. Journal of Fluids & Structures,1991,5(1):69—90.

[20]  BAKER C J.Ground vehicles in high cross winds part III: The interaction of aerodynamic forces and the vehicle system[J].Journal of Fluids & Structures,1991,5(2):221—241.

[21]  COLEMAN S A,BAKER C J. High sided road vehicles in cross winds[J]. Journal of Wind Engineering & Industrial Aerodynamics,1990,36(1):1383—1392.

[22]  韓艳,李春光,董国朝,等.太洪长江大桥主梁节段模型抗风性能研究报告[R]. 长沙:湖南大学风工程试验研究中心,2015:8—11.

HAN Y,LI C G,DONG G C,et al. Research report on wind resistance performance of Yangtze River bridge main girder section model of Tai Hong[R]. Changsha:Hunan University Wind Engineering Experimental Research Center,2015:8—11.(In Chinese)

[23]  DODDS C J,ROBSON J D. The description of road surface roughness[J]. Journal of Sound and Vibration,1973,31(2):175—183.

猜你喜欢

桥梁工程
市政道路桥梁工程的常见病害与施工处理技术探讨
关于市政道路桥梁工程伸缩缝施工技术的浅述
公路桥梁工程中桥涵软土地基的施工处理研究
基于BIM的桥梁工程设计与施工优化分析
浅谈现浇连续箱梁结构的施工工艺
桥梁工程无损检测技术的应用研究
浅析桥梁问题发生原因及桥梁加固改造要点
群桩承载力及抗震设计分析
桥梁工程施工中高支模技术的应用
《桥梁工程》课程的试卷分析及教学改进措施