拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长性能、体组成和血清生化指标的影响*
2019-08-05胡冬雪王成强乔洪金王际英李宝山孙永智
胡冬雪 马 季 王成强 乔洪金 王际英 李宝山 孙永智
拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长性能、体组成和血清生化指标的影响*
胡冬雪1,2马 季1,2王成强2乔洪金2①王际英2李宝山2孙永智2
(1. 上海海洋大学水产科学国家级实验教学示范中心 农业农村部鱼类营养与环境生态研究中心 水产动物遗传育种中心上海市协同创新中心 上海 201306;2. 山东省海洋资源与环境研究院 山东省海洋生态修复重点实验室 烟台 264006)
为探讨拟微绿球藻(sp)粉替代鱼粉对大菱鲆(L)幼鱼生长性能、体组成和血清生化指标的影响,用拟微绿球藻粉替代基础饲料中0%、3.88%、7.76%、11.64%和15.52%的鱼粉,配制成5种等氮等能的饲料(N0、N3.88、N7.76、N11.64、N15.52)。选取初始体重为(24.60 ±0.02) g的大菱鲆幼鱼600尾,随机分成5组,每组3个重复,每个重复40尾鱼,养殖周期70 d。结果显示:1)各实验组大菱鲆幼鱼的增重率(WGR)、特定生长率(SGR)、蛋白质效率 (PER)、饲料系数(FCR)、日摄食率(DFI)、肥满度(CF)和成活率(SR)均无显著差异(0.05);2)随着藻粉添加量的增加,全鱼及肌肉中粗脂肪含量显著降低(0.05),粗蛋白、粗灰分和水分含量无显著差异(0.05);3)血清溶菌酶(LZM)、补体蛋白C3、补体蛋白C4及酸性磷酸酶(ACP)活力均呈先上升后下降的趋势,分别在N7.76、N7.76、N11.64、N7.76组达到最大值,且显著高于N0组(0.05),N15.52组碱性磷酸酶(ALP)显著低于其他组(0.05),其他组之间无显著差异(0.05);4)藻粉组血清总超氧化物歧化酶(T-SOD)、总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶(GSH-PX)活力,均呈先上升后下降的趋势,在N7.76组达到最大值,且显著高于N0组(0.05);5) N7.76组血清甘油三酯(TG)含量显著低于其他组(0.05),其他组之间无显著差异(0.05),藻粉组血清总胆固醇(TCHO)显著低于N0组(<0.05),各藻粉组之间差异不显著(0.05);6)藻粉组血清谷草转氨酶(AST)活力呈先下降后上升的趋势,N11.64组达到最小值,显著低于N0组(0.05),藻粉组谷丙转氨酶(ALT)活力显著低于N0组(0.05)。研究表明,本实验条件下,拟微绿球藻粉替代大菱鲆幼鱼饲料中15.52%的鱼粉对其生长无显著影响,替代7.76%可显著提高其非特异性免疫力,降低血脂水平。
大菱鲆;拟微绿球藻粉;生长;抗氧化能力
大菱鲆()隶属于菱鲆科(Scophthal midae),瘤棘鲆属(),它的肌肉丰厚白嫩、骨刺少、内脏团小、出肉率高,口感爽滑甘美,是我国北方主要的海水养殖品种之一,也是世界公认的优质比目鱼类之一。鱼粉是名贵水产鱼类配合饲料中的主要蛋白质来源,但近年来远洋捕获的鲜杂鱼已经达到或者接近最大可持续生产(Rana, 2009; Krisetherton, 2009),造成了鱼粉供需之间的矛盾。寻找新型蛋白原料(Olsen, 2012),替代或减少鱼粉的使用成了目前水生动物营养研究的重点方向之一。
植物蛋白存在抗营养因子和氨基酸的平衡问题 (Thompson, 2012),在大菱鲆配合饲料中的使用比例较低。研究表明,大豆浓缩蛋白仅能替代17%的鱼粉而对大菱鲆幼鱼的生长不产生影响(Day, 2015);玉米蛋白替代大菱鲆幼鱼饲料中21% 的鱼粉对其生长性能和饲料效率无显著差异(Regost, 1999);复合植物蛋白替代20.7%的鱼粉显著降低大菱鲆幼鱼的生长性能(陈超, 2012)。微藻,如拟微绿球藻(sp.)、小球藻()及螺旋藻(),含有人体所需的20种氨基酸、多种维生素和微量元素,以及亚油酸和亚麻酸等高度不饱和脂肪酸(Yamaguchi, 1996 ; Emma, 2017),是替代鱼粉蛋白的理想原料。对鲫鱼() (石西, 2015)、罗非鱼(spp) (Olvera-Novoa, 1998)和虹鳟() (Dallaire, 2007)的研究表明,微藻粉替代适量的鱼粉对其生长无抑制作用。此外,郭斌等(2018)研究表明,10%的藻渣与51%复合植物蛋白粉替代35%的鱼粉,不影响大菱鲆的生长性能,且能促进摄食率、降低饲料系数,而10%的浒苔与51%复合植物蛋白粉替代35%的鱼粉显著降低大菱鲆生长性能。
拟微绿球藻是海洋单细胞微藻,属于褐藻门(Ochrophyta),真眼点纲(Eustigmatophyceae),适温范围广,易于培养,繁殖快,含有丰富的天然色素如玉米黄素和虾青素,可以增强免疫能力和抗氧化能力(吴吉林等, 2010),且含有丰富的高不饱和脂肪酸,尤其是EPA(余颖等, 2005),可以提高鱼虾蟹苗种的发育和存活率(杜涛等, 2010; Marques, 2006)。目前,尚无关于微藻粉替代大菱鲆配合饲料中鱼粉的相关报道,因此,本研究旨在探索拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长、体组成、非特异性免疫和血清生化指标的影响,为微藻粉在水产配合饲料中的应用提供参考。
1 材料与方法
1.1 实验设计
以鱼油和玉米油为主要脂肪源,用拟微绿球藻藻粉分别替代基础饲料中0、3.88%、7.76%、11.64%和15.52%的鱼粉,制成5种等氮等能的实验饲料(N0、N3.88、N7.76、N11.64、N15.52),N0为对照组。在各替代组中分别添加晶体蛋氨酸、赖氨酸和精氨酸,保持各饲料中必需氨基酸的平衡。饲料配方及营养组成见表1。
1.2 实验管理及样品采集
实验鱼购自蓬莱宗哲养殖有限公司,养殖实验在山东省海洋资源与环境研究院养殖实验室进行。正式实验前,实验鱼在养殖系统中驯养14 d,期间投喂对照组饲料。实验鱼禁食24 h,挑选初始体重为(24.60± 0.02) g的600尾大菱鲆幼鱼,随机分5组,每组设3个重复,每个重复40尾鱼,每天定时定量投喂2次(08:00和15:30),投喂量为鱼体重的1%~2%,根据摄食情况调整投喂量,投喂结束0.5 h左右排残饵,数颗粒,计算残饵量。养殖环境:绿色圆柱形水桶(直径80 cm,高70 cm,水深为50 cm),水温为(17.32±0.20)℃,pH为7.8~8.2,盐度为28~30,溶氧>5 mg/L,氨氮、亚硝酸氮均<0.1 mg/L。
70 d养殖实验结束后,禁食24 h,记录每桶鱼的存活数量并称重,计算存活率和增重率。随机取3尾用于全鱼常规分析,剩余随机取15尾测量体长、体重,计算肥满度,尾静脉取血后,分离内脏和背肌,并分别称重,计算脏体比。背肌-20℃保存,用于常规分析,以上取样均在冰盒上进行。血样在4℃冰箱静置4 h,离心分离(4000 r/min, 10 min),取上清液,-80℃保存,用于测定血清生理生化指标。
1.3 测定指标和样品分析方法
增重率(WGR, %)=(W-0)/0100
特定生长率(SGR, % /d)=(lnW-ln0)/×100;
蛋白质效率(PER, %)=(W-0)/(×)×100;
饲料系数(FCR) =/(W-0);
日摄食率(DFI, %/d) =/[(0+W)/2×] ×100;
脏体比(VSI, %) =W/W×100;
肥满度(CF) =W/3×100;
成活率(SR, %) =N/0×100;
式中,W为实验鱼末体重(g),0为实验鱼初体重(g),为养殖天数,为摄食干饲料重(g),为饲料中粗蛋白质的含量(%),W为内脏质量,为实验末鱼体长,N为实验末鱼的数量,0为实验初鱼的数量。
饲料及组织样品分析方法,水分测定采用105℃烘干恒重法测定(GB/T6435-2006);粗蛋白测定采用凯氏定氮法(GB/T6432-2006);粗脂肪采用索氏抽提法测定(GB/T6433-2006);粗灰分测定采用马弗炉 550℃灼烧法(GB/T 6438-2007)。
表1 饲料配方及营养组成(%干物质)
Tab.1 Composition and nutrient levels of the experimental diets (% dry mater)
注:a. 白鱼粉(%干物质):粗蛋白含量65.47%,粗脂肪含量7.2%
b. 大豆浓缩蛋白(%干物质):粗蛋白含量69.85%,粗脂肪含量2.1%
c. 矿物质预混料(mg/kg 饲料):MgSO4·7H2O, 3568.0 mg; NaH2PO4·2H2O, 25568.0 mg; KCl, 3020.5 mg; KAl(SO4)2, 8.3 mg;
CoCl2, 28.0 mg; ZnSO4·7H2O, 353.0 mg; Ca-lactate, 15968.0 mg; CuSO4·5H2O, 9.0mg; KI, 7.0mg; MnSO4·4H2O, 63.1mg;
Na2SeO3, 1.5mg; C6H5O7Fe·5H2O, 1533.0 mg; NaCl, 100.0 mg; NaF, 4.0 mg
d. 维生素预混料(mg/kg 饲料):维生素A, 38.0 mg; 维生素D, 13.2 mg; α-生育酚, 210.0 mg; 硫胺素, 115.0 mg; 核黄素, 380.0 mg; 盐酸吡哆醇, 88.0 mg; 泛酸, 368.0 mg; 烟酸, 1030.0 mg; 生物素, 10.0 mg; 叶酸, 20.0 mg; 维生素B12, 1.3 mg; 肌醇, 4000.0 mg; 抗坏血酸, 500.0 mg
e. 拟微绿球藻粉(%干物质):粗蛋白50.72%, 粗脂肪18.05%, 购自烟台海融生物技术有限公司
Notes: a. White fish meal(% dry matter): Crude protein 65.47%, Crude lipid 7.2%
b. Soy protein concentrate(% dry matter): Crude protein 69.85%, Crude lipid2.1%
c. Mineral mixture (mg/kgdiet): MgSO4×7H2O, 3568.0 mg; NaH2PO4×2H2O, 25568.0 mg; KCl, 3020.5 mg; KAl (SO4)2, 8.3 mg; CoCl2, 28.0 mg; ZnSO4×7H2O, 353.0 mg; Ca-lactate, 15968.0 mg; CuSO4×5H2O, 9.0 mg; KI, 7.0 mg; MnSO4×4H2O, 63.1 mg; Na2SeO3, 1.5 mg; C6H5O7Fe×5H2O, 1533.0 mg, NaCl, 100.0 mg; NaF, 4.0 mg
d. Vitamin mixture (mg/kg diet): retinol acetate, 38.0 mg; cholecalciferol, 13.2 mg; alpha-tocopherol, 210.0 mg; thiamin, 115.0 mg; riboflavin, 380.0 mg; pyridoxine HCl, 88.0 mg; pantothenic acid, 368.0 mg; niacin acid, 1030.0 mg; biotin, 10.0 mg; folic acid, 20.0 mg; vitamin B12, 1.3 mg; inositol, 4000.0 mg; ascorbic acid, 500.0 mg
e.meal (% dry matter): Crude protein 50.72%, Crude lipid 18.05%, buy from Yantai Hai Rong Biotechnology Co., Ltd., China
血清溶菌酶(LZM)、总抗氧化能力(T-AOC)、总超氧化物歧化酶(T-SOD)、谷胱甘肽过氧化物酶(GSH-PX)活力及丙二醛(MDA)含量采用南京建成的试剂盒测定;补体蛋白C3和补体蛋白C4采用江莱生物酶联免疫分析(ELISA)试剂盒测定。
血清甘油三酯(TG)、胆固醇(CHO)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、碱性磷酸酶(ALP)、酸性磷酸酶(ACP)、谷草转氨酶(AST)、谷丙转氨酶(ALT)、采用全自动生化分析仪(7020, 日立, 日本)进行测定,试剂盒均购自四川迈克生化技术有限公司。
1.4 数据统计分析
采用SPSS18.0软件对数据进行单因素方差分析 (One-Way ANOVA),当处理之间差异显著(<0.05)时,用Duncan’s检验进行多重比较,结果以平均值±标准差(Means±SD)形式表示。
2 结果
2.1 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长及饲料利用的影响
拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长和饲料利用数据见表2。随着拟微绿球藻粉替代比例增大,大菱鲆幼鱼WGR、SGR、PER和CF呈逐渐上升的趋势,但各组间无显著差异(>0.05),FCR和DFI呈逐渐下降的趋势,无显著差异(0.05);藻粉替代鱼粉对实验鱼的VSI和SR均无显著影响(0.05)。
2.2 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼全鱼和肌肉体组成的影响
如表3所示,藻粉组的全鱼和肌肉粗脂肪含量呈逐渐下降的趋势,显著低于N0组(<0.05);藻粉替代鱼粉对全鱼和肌肉的水分、粗蛋白及粗灰分的含量均无显著影响(0.05)。
2.3 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血清非特异性免疫的影响
如表4所示,LZM和补体蛋白C3活力呈先上升后下降的趋势,在N7.76组达到最大值并显著高于N0组(<0.05);补体蛋白C4活力呈先上升后下降的趋势,在N11.64组达到最大值并显著高于N0组(<0.05);ACP活力呈先上升后下降趋势,N7.76组达到最大值,并显著高于N0组(<0.05)。
2.4 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼抗氧化能力的影响
如表5所示,随着拟微绿球藻粉的替代量增大,T-SOD、T-AOC和GSH-PX活力呈先上升后下降的趋势,在N7.76组达到最大值并显著高于N0组(<0.05),而MDA含量呈逐渐下降的趋势并显著低于N0组(<0.05)。
表2 微藻粉替代鱼粉对大菱鲆幼鱼生长性能及饲料利用的影响(=3;¯±SD)
Tab.2 Effects of fish meal replacement by microalgae meals on growth performance and feed utilization of juvenile turbot
注:同行数值后不同上标英文表示差异显著(<0.05),下同。a: 每组15个平行
Notes: Values in the same row with different superscripts show significant difference (<0.05), the same below. a: 15 parallels in each group
表3 微藻粉替代鱼粉对大菱鲆幼鱼体组成的的影响(%湿重;=3;¯±SD)
Tab.3 Effects of fish meal replacement by microalgae meals on tissue proximate composition of juvenile turbot (%wet weight; n=3;x¯±SD)
表4 微藻粉替代鱼粉对大菱鲆幼鱼血清非特性免疫能力的影响(=3;¯±SD)
Tab.4 Effects of fish meal replacement by microalgae meals on serum non-specific immune index of juvenile turbot (n=3;x¯±SD)
表5 微藻粉替代鱼粉对大菱鲆幼鱼血清抗氧化能力的影响(%湿重;=3;¯±SD)
Tab.5 Effects of fish meal replacement by microalgae meals on serum antioxidant indeices of juvenile turbot (%wet weight; n=3;x¯±SD)
2.5 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血清血脂指标的影响
如表6所示,血清TG呈先下降后上升的趋势,在N7.76组达到最低值并且显著低于N0组(<0.05);藻粉组血清TCHO含量显著低于N0组(<0.05),但各藻粉组之间无显著差异(<0.05);LDL-C含量呈下降趋势,HDL-C含量呈先上升后下降的趋势,在N7.76组达到最大值并显著高于N0组(<0.05),且N11.64和N15.52组显著低于N0组(<0.05);藻粉组血清LDL-C/ HDL-C显著低于N0组(<0.05),但各藻粉组之间无显著差异(>0.05)。
2.6 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血清代谢指标的影响
如表7所示,AST呈先下降后上升的趋势,N11.64组达到最小值,显著低于N0组(<0.05),而ALT呈逐渐下降趋势,显著低于N0组(<0.05)。
表6 微藻粉替代鱼粉对大菱鲆幼鱼血清血脂指标的影响(=3;¯±SD)
Tab.6 Effects of fish meal replacement by microalgae meals on serum lipid of juvenile turbot (n=3;x¯±SD)
表7 微藻粉替代鱼粉对大菱鲆幼鱼血清代谢指标的影响(=3;¯±SD)
Tab.7 Effects of fish meal replacement by microalgae meals on serum metabolic index of juvenile turbot (n=3;x¯±SD)
3 讨论
3.1 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长及饲料利用的影响
研究表明,饲料中添加适量的海藻(2.5%~10%)可提高鱼类生长、饲料利用和抗病力(Norambuena, 2015;Wassef, 2005)。本研究中,拟微绿球藻粉替代鱼粉对大菱鲆幼鱼的生长和饲料的利用均无显著影响,大菱鲆幼鱼的成活率(SR)介于97.5%~100%,各组无显著差异。微藻组与鱼粉组SR相比没有显著降低,这与各组之间成活率均较高有关。大菱鲆幼鱼增重率(WGR)、特定生长率(SGR)和肥满度(CF)均无显著差异,与郭斌等(2018)实验结果一致,而日摄食率(DFI)与其研究结果不同,DFI可能与其含有的诱食作用的物质含量有关,例如,海藻中常见的二甲基-β-丙酸噻亭(DMPT) (邹仕庚等, 2005),可以增加摄食率,因本研究中未对拟微绿球藻的诱食成分进行测定,其与微藻渣的差异需进一步研究。与鱼粉组相比,大菱鲆幼鱼饲料系数(FCR)无显著差异,这与小球藻粉替代鲫鱼饲料中鱼粉的报道存在差异(石西等, 2015)。随着小球藻替代鲫鱼饲料中鱼粉比例增加,饲料系数呈先下降后升高的趋势,出现差异的原因可能是小球藻粉最低替代水平21.8%远高于本研究拟微绿球藻粉最高替代水平15.52%,拟微绿球藻粉的添加量可能尚未到达引起饲料系数升高的拐点。与鱼粉组相比,藻粉组大菱鲆幼鱼脏体比(VSI)无显著差异,这与曹申平等(2016)螺旋藻对异育银鲫幼鱼的研究和Miller等(2007)对大西洋鲑鱼()的研究相符,而与石西等(2015)小球藻在鲫鱼幼鱼中的研究结果不一致,其原因可能与鱼的初末体重有关,也可能与选用的是藻粉种类或替代量有关。
3.2 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼全鱼和肌肉体组成的影响
研究表明,微藻替代鱼粉对鱼体组成产生一定影响,但这些影响对鱼的营养价值影响比较小(Tibaldi, 2015; Kissinger, 2016)。本研究中,大菱鲆幼鱼全鱼的水分、粗蛋白和粗灰分不受拟微绿球藻粉添加量的影响,这与郭斌等(2018)、慈丽宁(2011)和张燕等(2017)研究结果一致,说明添加适量的拟微绿球藻粉替代大菱鲆幼鱼饲料中鱼粉对其全鱼和肌肉蛋白质含量无显著影响。而大菱鲆全鱼和肌肉粗脂肪含量呈下降趋势,这可能与拟微绿球藻粉中含有较多的EPA有关,EPA可以抑制6-磷酸葡萄糖脱氢酶、乙酰羟化酶和苹果酸脱氢酶的活性,使肝脏内脂肪合成能力减弱,从而影响脂肪的合成(胡斌等, 2013)。此外,微藻粉含有较多的色素类成分和纤维素(Iα型)等非淀粉性多糖,不能被鱼类充分吸收利用(Lubian, 2002),从而影响脂肪的沉积,这一研究结果与星斑川鲽()幼鱼饲料中添加拟微绿球藻粉的实验结果一致(张燕等, 2017)。
3.3 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血清非特异性免疫指标的影响
溶菌酶(LZM)通过溶解细菌的细胞壁来完成免疫反应,是鱼类非特异性免疫系统的重要组成部分。本研究中,藻粉组血清中LZM活力呈先上升后下降的趋势,在N7.76组达到最大值并显著高于对照组,这说明适量的拟微绿球藻粉可以提升鱼类溶菌酶免疫功能,而过量的会对鱼类溶菌酶免疫产生抑制作用。补体蛋白C3和补体蛋白C4是鱼类血清和组织液中一组经活化后具有酶活性的蛋白质,补体蛋白C3主要是由巨噬细胞、淋巴组织和骨髓等合成的β球蛋白,可以在补体蛋白C3裂解酶的作用下参与补体激活,补体蛋白C4也是补体经典激活途径的重要组分(慈丽宁, 2011)。本研究补体蛋白C3活力呈先上升后下降趋势,在N7.76组达到最大值并显著高于对照组,而补体蛋白C4活力呈先上升后下降的趋势,在N11.64组达到最大值并显著高于对照组,原因是拟微绿球藻含有的藻多糖(PSP)可以与补体因子结合激活免疫系统,促进细胞的吞噬活性(Dalmo, 1996),这表明适量的拟微绿球藻粉可以提高大菱鲆幼鱼非特异性免疫能力。ALP和ACP是鱼类非特性免疫的重要指标,对鱼体抗病力和抗应激力起促进作用。本研究中,血清中ALP含量仅N15.52组显著低于对照组,ACP先上升后下降,在N7.76组达到最大值并显著高于对照组。可能是拟微绿球藻中多糖和寡糖起到激活非特异性免疫的作用。
3.4 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼抗氧化指标的影响
总超氧化物歧化酶(T-SOD)、总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶 (GSH-PX)等活性在一定程度上能够反映机体抵抗氧化应激的能力,当机体发生氧化损伤时,脂质过氧化物水平往往升高,抗氧化能力下降(梅琳等, 2015)。本研究中,随着拟微绿球藻粉的替代比例增大,血清中T-SOD、T-AOC和GSH-PX活力呈先上升后下降的趋势,均在N7.76组达到最大值,并显著高于对照组。说明拟微绿球藻粉替代鱼粉的水平为7.76%时,大菱鲆的抗氧化能力达到最大值。随着替代量的增加,对机体可能存在损伤,说明适量的拟微绿球藻粉的添加有利于大菱鲆幼鱼抗氧化能力的提高,过多不利于大菱鲆幼鱼的生长。丙二醛(MDA)是膜脂过氧化作用的最终分解产物,其含量可以反映大菱鲆幼鱼遭受胁迫伤害的程度(Martínez-Álvarez, 2005; Jain, 2001),藻粉组血清中MDA含量呈逐渐下降的趋势,并显著低于对照组,说明适量的拟微绿球藻粉的添加有利于大菱鲆幼鱼的抗胁迫能力。
3.5 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血脂指标的影响
本研究中,拟微绿球藻粉的添加显著影响大菱鲆幼鱼的血脂水平。随着拟微绿球藻粉替代比例增加,藻粉组TCHO呈逐渐下降趋势,而TG呈先下降后上升的趋势,在N7.76组显著低于对照组,造成血脂水平降低的原因可能是拟微绿球藻粉含有大量的高不饱和脂肪酸和类胡萝卜素,特别是EPA含量占总脂肪含量的35% (魏东等, 2000),具有抗血栓和调节血脂的作用,其次含有较多亚油酸和亚麻酸,这2种高不饱和脂肪酸是线粒体膜磷脂和细胞膜重要组成成分,可以减少胆固醇和甘油三酯在肝脏和脂肪中的沉淀和堆积(Werman, 2003),有降脂的作用(Abdel, 2009)。血清中LDL-C含量增加可以使更多的TCHO和TG转运到血液,而HDL-C可以使更多的TCHO转运到肝脏,LDL-C和HDL-C影响血清中的TCHO和TG的含量(曹林等, 2017)。本研究中LDL-C呈下降趋势,HDL-C呈先上升后下降趋势,LDL-C/ HDL-C显著低于对照组,各藻粉组间无显著差异。说明饲料中添加适量拟微绿球藻对降低低密度脂蛋白含量,增加高密度脂蛋白含量有一定作用,同时能显著降低密度脂蛋白与高密度脂蛋白的比值,有利于大菱鲆的血脂健康。
3.6 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼血清代谢指标的影响
谷草转氨酶(AST)和谷丙转氨酶(ALT)是反映肝功能的指标,AST主要存在肝细胞线粒体内,当肝脏发生严重坏死和破损时,才会导致血清中AST偏高(魏佳丽等, 2016)。本研究中,AST呈先下降后上升的趋势,原因是拟微绿球藻粉含有亚油酸和亚麻酸,可以防止胆固醇和甘油三脂在肝脏中的堆积,一定替代范围内可以保护肝脏等组织的正常生理功能不受损伤,但随着添加量的增加,这种保护作用会呈下降趋势甚至过多的添加可能造成损伤。ALT主要存在于肝细胞中,血清中含量很低,只有当细胞大量坏死或者细胞膜的通透性增强时含量会增加(Chen, 2003)。本实验中ALT呈下降趋势,说明添加一定量的拟微绿球藻粉可能维持了肝细胞膜对ALT的稳定性。
4 结论
综上所述,在本实验条件下,用拟微绿球藻粉替代15.52%以内鱼粉对大菱鲆幼鱼的生长性能无显著影响,同时可以降低脂肪在鱼体内的沉积;添加7.76%的拟微绿球藻粉替代鱼粉能够显著提高大菱鲆幼鱼的免疫性能和抗氧化能力,同时保护其营养价值。
Abdel TM, Ahmad MH. Live spirulina () as a growth and immunity promoter for Nile tilapia,(L.), challenged with pathogenicAquaculture Research, 2010, 40(9): 1037–1046
Cao L, Zhang TT, Xu HG,. Effects of different protein hydrolysates in high plant protein diets on the lipid accumulation of Juvenile Japanese seabass (). Progress in Fishery Sciences, 2017, 38(03): 89–98 [曹林, 张婷婷, 徐后国, 等. 饲料中不同水解蛋白对鲈鱼()幼鱼鱼体及组织脂肪含量的影响. 渔业科学进展, 2017, 38(3): 89–98]
Cao SP, Han D, Xie SQ,. Effects of dietary replacement fish meal protein withpowder protein on feed intake, growth performance, feed utilization and protein deposition in Juvenile Gibel Carp (). Acta Hydrobiologica Sinica, 2016, 40(4): 647–654 [曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响. 水生生物学报, 2016, 40(4): 647–654]
Chen C, Chen JH. Effects of taurine and compound crystalline amino acid on feed intake, growth and feed utilization of turbot (L)Chinese Agricultural Science Bulletin2012, 28(23): 108–112 [陈超, 陈京华. 牛磺酸、晶体氨基酸对大菱鲆摄食、生长和饲料利用率的影响. 中国农学通报, 2012, 28(23): 108–112]
Chen JY, Chen JC, Wu JL. Molecular cloning and functional analysis of zebrafish high-density lipoprotein-binding protein. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2003, 136(1): 117–130
Ci LN. Effect of the diets replacing different proportions of fish meal with aglae powder on the growth performance, nutrients digestbilty and immunity of bluntnose black bream (). Magte’s Thsis of Nanjing Agricultural University, 2011 [慈丽宁. 藻粉替代鱼粉对团头鲂生产性能、营养成分、消化机能和免疫的影响. 南京农业大学硕士研究生学位论文, 2011]
Dallaire V, Lessard P, Vandenberg G,. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout () fry. Bioresource Technology, 2007, 98(7): 1433–1439
Dalmo RA, Bogwald J, Ingebrigtsen K,. The immunomodulatory effect of laminaran [β(1,3)-D-glucan] on Atlantic salmon,L. anterior kidney leucocytes after intraperitoneal, peroral and peranal administration. Journal of Fish Diseases, 1996, 19(6): 449–457
Day OJ, Hgp G. Soybean protein concentrate as a protein source for turbotL. Aquaculture Nutrition, 2015, 6(4): 221–228
Du T, Huang Y, Luo J. Effects of rotifer enriched with algaintensively on artificial breeding of three fish species. Journal of Dalian Fisheries University, 2010, 25(2): 158–161 [杜涛, 黄洋, 罗杰. 酵母轮虫和以小球藻、螺旋藻强化的轮虫对3种仔鱼人工育苗效果的影响. 大连海洋大学学报, 2010, 25(2): 158–161]
Emma T, Schrama JW, Gruppen H,. Effect of cell wall characteristics on algae nutri ent digestibility in Nile tilapia () and African catfish (). Aquaculture, 2017, 479: 490–500
Guo B, Liang MQ, Xu HG,. Effects of gracilaria verrucosa, enteromorpha prolifera, algae residue and fungi residue on growth performance, serum and liver biochemical Indices, body composition and intestinal histological morphology of juvenile turbot ()Chinese Journal of Animal Nutrition, 2018, 30(1): 299–312 [郭斌, 梁萌青, 徐后国, 等. 江蓠、浒苔、藻渣和菌渣替代鱼粉对大菱鲆幼鱼生长性能、血清和肝脏生化指标、体组成和肠道组织结构的影响. 动物营养学报, 2018, 30(1): 299–312]
Hu B, Song LP, Yan JR,. Research advance on marine microalgae eicosapentaenoic acid. Hebei Fisheries, 2013, 43(4): 43–47 [胡斌, 宋理平, 闫家仁, 等. 海洋微藻源二十碳五烯酸的研究进展. 河北渔业, 2013, 43(4): 43–47]
Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+, K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Biology & Medicine, 2001, 30(3): 232–237
Kissinger KR, Garcia OA, Trushenski JT. Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containingfor long fin yellow tail. Aquaculture, 2016(452): 37–44
Krisetherton PM, Grieger JA, Etherton TD. Dietary reference intakes for DHA and EPA. Prostaglandins Leukotrienes & Essential Fatty Acids, 2009, 81(2): 99–104
Lubian LM, Montero O, Moreno-Garrido I,.(Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3–5): 249–255
Marques A, Thanh TH, Sorgeloos P,. Use of micro-algae and bacteria to enhance protection of gnotobiotic Artemia, against different pathogens. Aquaculture, 2006, 258(1–4): 116–126
Martínez-Álvarez RM, Morales AE, Sanz A. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Reviews in Fish Biology & Fisheries, 2005, 15(1–2): 75–88
Mei L, Zhou HH, Mai KS,. Effects of dietary substitution of fish meal by fermented silkworm pupae on the growth, feed intake, digestion and immunity of Juvenile Turbot (L.). Progress in Fishery Sciences, 2015, 36(3): 85–92 [梅琳, 周慧慧, 麦康森, 等.蛹肽蛋白替代鱼粉对大菱鲆(L.)幼鱼生长、饲料利用、消化代谢酶及免疫性能的影响. 渔业科学进展, 2015, 36(3): 85–92]
Miller MR, Nichols PD, Carter CG. Replacement of fish oil with thraustochytridsp. L oil in Atlantic salmon parr (L) diets. Comparative Biochemistry & Physiology Part A: Molecular & Integrative Physiology, 2007, 148(2): 382–392
Norambuena F, Hermon K, Skrzypczyk V,. Algae in Fish Feed: Performances and fatty acid netabolism in Juvenile. PLoS One, 2015, 10(4): 1–17
Olsen RL, Hasan MR. A limited supply of fish meal: Impact on future increases in global aquaculture production. Trends in Food Science & Technology, 2012, 27(2): 120–128
Olvera-Novoa MA, Domínguez-Cen LJ, Olivera-Castillo L,. Effect of the use of the microalgaeas fish meal replacement in diets for tilapia,(Peters), fry. Aquaculture Research, 1998, 29(10): 709– 715
Rana KJ, Siriwardena S, Hasan MR. Impact of rising feed ingredient prices on aqua feeds and aquaculture production. FAO, Fisheries and Aquaculture Technical Paper, Rome: FAO. 2009, 541: 63–64
Regost C, Arzel J, Kaushik SJ. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (). Aquaculture, 1999, 180(1–2): 99–117
Shi X, Luo Z, Huang C,. Effect of Substituting. for regular fish meal on growth, body composition, hepatic lipid metabolism and histology in crucian carp. Acta Hydrobiologica Sinica, 2015, 39(3): 498–506 [石西, 罗智, 黄超, 等. 小球藻替代鱼粉对鲫生长、体组成、肝脏脂肪代谢及其组织学的影响. 水生生物学报, 2015, 39(3): 498–506]
Tibaldi E, ChiniZittelli G, Parisi G,. Growth performance and quality traits of European sea bass () fed diets including increasing levels of freeze-driedsp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture, 2015(440): 60–68
Thompson KR, Velasquez A, Patterson JT,. Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for Nile tilapia fry and juvenile stages. North American Journal of Aquaculture, 2012, 74(3): 365–375
Wassef EA, El-Sayed A FM, Kandeel KM,. Evaluation of Pterocla dia () and Ulva () meals as additives to gilthead sea breamdiets. Egyptian Journal of Aquatic Research, 2005(31): 321–332
Wei D, Zhang XC, Sui ZH,. Effects of nitrogen sources and N/P ration on cell growth, total lipid content and fatty acid composition of. Marine Sciences, 2000, 24(7): 46–51 [魏东, 张学成, 隋正红, 等. 氮源和N/P对眼点拟微球藻的生长、总脂含量和脂肪酸组成的影响. 海洋科学, 2000, 24(7): 46–51]
Werman MJ, Sukenik A, Mokady S. Effects of the marine unicellular algaspto reduce the plasma and liverlevels in male rats fed on diets with cholesterol. Journal of the Agricultural Chemical Society of Japan, 2003, 67(10): 2266–2268
Wei KL, Wang JY, Song ZD,. Effects of partial substitute for fish meal by hydrolyzed kill meal on the growth performance, the body composition and the serum biochemical prameters of juvenile pearl gentian grouper. Progress in Fishery Sciences, 2016, 37(1): 100–110 [魏佳丽, 王际英, 宋志东, 等. 酶解磷虾粉替代鱼粉对珍珠龙胆石斑鱼幼鱼生长性能、体组成及血清生化的影响. 渔业科学进展, 2016, 37(1): 100–110]
Wu JL, Zhou B, Ma MY,. Research progress on micro-algae pigment. Food Science, 2010, 31(23): 395–400 [吴吉林, 周波, 麻明友, 等. 微藻色素的研究进展. 食品科学, 2010, 31(23): 395–400]
Yamaguchi K. Recent advances in micro-algal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. Journal of Applied Phycology, 1996, 8(6): 487–502
Yu Y, Chen BL. Progress of the studies onMarine Science Bulletin, 2005, 24(6): 75–81 [余颖, 陈必链. 微绿球藻的研究进展. 海洋通报, 2005, 24(6): 75–81]
Zhang Y, Qiao HJ, Li BS,. Effects of replacement of fish oil by micro-algae meals on growth performance, tissue proximate composition and biochemical indices of juvenile starry flounder,. Journal of Fishery Sciences of China, 2017, 24(6): 1223–1233 [张燕, 乔洪金, 李宝山, 等. 微藻粉替代鱼油对星斑川鲽幼鱼生长、体组成和生理指标的影响. 中国水产科学, 2017, 24(6): 1223–1233]
Zou SG, TAo ZG, Xu Y. Application of DMPT in aquatic animal nutrition. Guangdong Feed, 2005, 14(3): 34–35 [邹仕庚, 陶正国, 许毅. DMPT在水产动物营养中的应用. 广东饲料, 2005, 14(3): 34–35]
Effects of Replacement of Dietary Fish Meal bysp. Meal on Growth Performance, Body Composition, and Serum Biochemical Indices of Juvenile Turbot (L.)
HU Dongxue1,2, MA Ji1,2, WANG Chengqiang2, QIAO Hongjin2①, WANG Jiying2, LI Baoshan2, SUN Yongzhi2
(1. National Demonstration Center for Experimental Fisheries Science Education, Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306; 2. Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006)
A 70-day trial was conducted to investigate the effect of replacement of dietary fish meal byspmeal on growth performance, body composition, and serum biochemical indices of juvenile turbotLwith an initial weight body weight of (24.60±0.02) gFive isonitrogenous and isoenergetic diets (N0, N3.88, N7.76, N11.64, and N15.52) were formulated with 0%, 3.88%, 7.76%, 11.64%, and 15.52% fish meal replaced byspmeal, respectively. Each diet was randomly fed to three replicates of fish, with 40 fish per replicate. The following results were obtained. 1) There were no significant differences (0.05) in weight growth rate, specific growth rate, protein efficiency ratio, feed coefficient ratio, feed intake, condition factor, and survival rate among the groups. 2) As the meal content ofspincreased, the crude lipid content in the whole body and muscle was significantly decreased (0.05); however the crude protein, crude ash, and moisture content were not significantly different (0.05). 3) Lysozyme, complement protein C3, complement protein C4, and acid phosphatase activities showed a rising trend followed by a decline, with the highest point reached in the N7.76, N7.76, N11.64, and N7.76groups, respectively, and were significantly higher than that in the N0group (0.05). The alkaline phosphatase activity of the N15.52group was significantly lower than that the other groups and there were no significant differences among other groups (0.05). 4) The total superoxide dismutase, total antioxidant capacity, and glutathione peroxidase activities in the serum of the algae meal groups first increased and then decreased, and reached a maximum in the N7.76group, which was significantly higher than that in the N0group (0.05). 5) The triglyceride content in the serum of the N7.76group was significantly lower than that in the other groups (0.05), and there were no significant differences among the other groups (0.05). The total cholesterol content of the algae meal groups was significantly lower than in the N0group (0.05), but there were no significantly differences among the algae meal groups. 6) The aspartate aminotransferase activity in the serum of the algae meal groups followed a decreasing to increasing trend, reaching the lowest point in the N11.64group and was significantly lower than that in the N0group (<0.05). The alanine aminotransferase activity of the algae meal groups was significantly lower than that in the N0group (0.05). In conclusion, under the experimental conditions tested,sp. meal could replace 15.52% of fish meal in juvenile turbot feed without any effects on the growth performance, and the replacement of 7.76% fish meal significantly improved the nonspecific immunity and reduced the blood lipid levels in juvenile turbot.
Juvenile turbot;spmeal; Growth performance; Antioxidant activity
QIAO Hongjin, E-mail: hongjinqiao@hotmail.com
10.19663/j.issn2095-9869.20180529003号S963
A
2095-9869(2019)04-0021-10
* 烟台市重点研发计划(2017ZH066)、山东省自然科学基金青年基金(ZR2017QD007)、海洋公益性行业科研专项(201505022-5)和山东省现代农业产业技术体系藻类产业创新团队项目(SDAIT-26-05)共同资助[This work was supported by Key Research and Development Program of Yantai City(2017ZH066); Shandong Provincial Natural Science Foundation, China (ZR2017QD007); Public Science and Technology Research Funds Projects of Ocean (201505022-5); Modern Agricultural Industry System of Shandong Province of China: Industrial Innovation Team of Algae (SDAIT-26-05)]. 胡冬雪,E-mail: 1018865124@qq.com
乔洪金,副研究员,E-mail: hongjinqiao@hotmail.com
2018-05-29,
2018-06-25
胡冬雪, 马季, 王成强, 乔洪金, 王际英, 李宝山, 孙永智. 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼生长性能、体组成和血清生化指标的影响. 渔业科学进展, 2019, 40(4): 21–30
Hu DX, Ma J, Wang CQ, Qiao HJ, Wang JY, Li BS, Sun YZ. Effects of replacement of dietary fish meal bysp. meal on growth performance, body composition, and serum biochemical indices of juvenile turbot (L). Progress in Fishery Sciences, 2019, 40(4): 21–30
(编辑 江润林)