基于DEA模型的我国碳排放“总量控制”效率测度研究
2019-07-05戴钰张妮娜
戴钰 张妮娜
摘 要 基于C2R模型和BCC模型,测算2000-2016年我国碳排放“总量控制”效率,从综合效率、纯技术效率、规模效率以及投入冗余率与产出不足率方面测算碳排放效率.
关键词 碳排放效率;C2R模型;BCC模型
中图分类号 F062.2 文献标识码 A
Research on the Measure of Carbon Emission
Efficiency in China Based on DEA Method
DAI Yu1, ZHANG Nina2
(1. School of Arts and law,Changsha University of Technology,Changsha,Hunan 410076,China)
2.School of International Exchange,Shandong Institute of Management,Jinan,Shandong 250100,China)
Abstract In this paper,the C2R model and BCC model were used to estimate carbon emission efficiency from the aspects of comprehensive efficiency, pure technical efficiency, scale efficiency, input redundancy rate and output deficiency rate in China during 2000 to 2016.
Key words Carbon emission efficiency;C2R Method;BCC Method
1 问题的提出与文献综述
随着全球经济的快速发展,二氧化碳等温室气体排放的不断增加所引起的全球气候变暖问题已成为人类社会面临的最严峻挑战之一.据IPCC第五次评估报告显示,1880至2012年全球地表平均温度上升约0.85度.导致气候变化的根源是温室气体排放量的增加,而其中90%以上与燃烧化石燃料有关,76%来源于人类活动碳排放[1].面对如此严峻的气候变暖现状,控制化石能源消耗并减少碳排放水平,已成为全球各国的基本共识[2].解决好二氧化碳等温室气体排放所引起的各类矛盾不仅仅是单纯的科学问题,也是全球性的政治、经济与社会问题.据相关报告表明,2000-2011年,世界碳排放量以每年平均约3%的速度增长.2012-2016年,碳排放增速呈下降趋势,但碳排放效率不太理想,造成严重的环境污染
具体数据详见世界资源研究所http://cait.wri.org.
改革开放四十年来,中国经济社会发展取得了巨大成就,对世界经济增长贡献率已经超过30%.但是,中国资源约束日益趋紧,环境承载力接近上限,依靠要素驱动的粗放型、低效率增长模式难以为继.据最新发布的2018年环境绩效指数(EPI)显示,中国EPI得分仅为50.74,在所有180个国家中排名第120名,空气质量排在倒数第4名[3].严重的环境污染给经济发展带来巨大的损失,生态环境部发布的《中国经济生态生产总值核算发展报告2018》指出,2015年中国污染损失成本约2万亿元[4].另外,根据世界银行估计,每年中国环境污染和生态破坏造成的损失占GDP比例高达10%.环境污染严重威胁居民健康,Kulmala(2015)估计每年中国有250万人死于室内和室外空气污染导致的健康危害[5].
我国作为世界上最大的发展中国家,碳排放量远高于世界平均水平,2005年我国碳排放總量就达到近60亿吨,成为全球第一排碳大国.中国作为负责任的大国,在多种场合展现了碳减排的决心.2009年,哥本哈根气候大会上,中国正式承诺:到2020年单位生产总值的二氧化碳排放比2005年下降40%~45%.在“十二五”规划中,明确提出:要把大幅降低二氧化碳排放作为约束性指标,碳排放强度下降17%,有效控制温室气体排放.“十三五”规划设定碳排放强度年均下降18%的目标,并综合考虑各省发展阶段、资源凛赋、战略定位、生态环保等因素,分类确定省级碳排放控制目标.党的十九大报告提出并强调,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾.改善空气质量,加强生态文明建设,成为当前政府工作的重中之重.本文基于C2R模型和BCC模型,测算2000-2016年我国碳排放效率,旨在全面考察我国碳排放约束政策的有效性,进而为推进生态文明建设提供参考依据.
国内外不少学者对碳排放效率进行研究.Ang等(1998)[6] 采用LMDI法,分析中国工业部门碳排放情况,发现碳排放总量增多与工业部门总产出变化呈正相关关系,与能源强度变化呈负相关关系.Zaim和Taskin(2000)[7]、Zofio和Prieto(2001)[8]、Zhou等(2006)[9] 利用 DEA不同的模型,对 OECD 国家和部分地区碳排放绩效进行评
价.Zhou等(2012)通过构建非径向DDF模型,对电力生产行业能源与碳排放效率进行评估[10].Ramli等(2013)则考虑到变量的松弛性,对DDF进行扩展,建立规模方向距离函数(SDDF)模型,分析碳排放效率[11].Wise等(2014)和Alamdarlo(2016)先后对世界和伊朗国内农业生产部门的碳排放进行了测算[12,13].Ang 和Su(2016)等对欧盟28 国的1991 至2012 年电力消费进行了结构分解,对不同类型的电力所产生的碳排放量进行了计算和比较[14].
我国学者采用不同方法,利用宏、微观数据,分析我国碳排放效率及其影响因素.一是碳排放效率的测算及评价.王群伟等(2010)基于非期望产出DEA模型,构建Malmquist指数,对各省的二氧化碳排放绩效动态变化进行分析[15].而张苗等(2016)基于SBM模型,把碳排放当成成本的适用土地集约利用水平,利用各省数据进行分析[16].二是碳排放效率与其影响因素分析.董捷和员开奇(2016)利用DEA和Malmquist指数模型,分析湖北省IPCC碳排放清单数据,发现农业政策、金融危机及技术进步等因素对土地利用的碳排放效率有显著影响[17].田原等(2017)利用灰色系统理论及信息熵对金融环境特别是融资环境和碳市场的关联性进行分析[18].谭显春等(2018)基于经济、人口、省级能耗量等数据对广东省的主体功能区碳排放进行了比较精确的核算[19].舒心等(2018)基于城市代谢模型,用各类城市活动对应的碳排放系数计算了长三角城市群的碳排放数据,并进一步实证研究了碳排放和城市用地变化之间的关系[20].胡宗义和王天琦(2018)分析了人口结构和经济增长对我国碳排放的影响程度[21].张强(2018)基于Luenberger生产率指数法,构建加权Russell方向性距离函数指数包络分析等模型测算了“丝绸之路经济带”中国段交通运输碳排放效率[22].
国内外学者们对碳排放效率的研究范围较为广泛,研究方法较多,特别是在选取测算碳排放效率指标和分析其影响因素两方面.但从全要素角度研究碳排放效率的公开文献相对较少.本文基于全要素视角对碳排放效率进行定义,建立广义碳排放效率测度模型,采用DEA对我国碳排放“总量控制”效率进行测算分析,以期为我国进一步强化碳排放总量与强度双控制提供建议.
2 模型构建、变量选择与数据说明
2.1 碳排放效率内涵界定
有关“碳排放效率”可分为狭义和广义碳排放效率两种.狭义碳排放效率作为评价标准,是指碳排放量与某一要素的比值;而广义碳排放效率是指从全要素视角,利用生产前沿边界,以生产单位偏离其生产边界的程度,衡量其技术效率.
本文选择广义碳排放效率,从全要素视角测算2000-2016年我国碳排放效率,即在一定产出水平下,最优生产边界(即生产前沿边界)与实际二氧化碳投入的比值,其取值范围为[0,1],数值越大表明碳排放效率越高.当数值等于1时,则说明此时处于生产前沿边界上,碳排放的污染程度处于最小状态.由碳排放效率定义可知,确定生产前沿边界是测算碳排放效率的关键.目前,主要有两种常用方法:一种是数据包络分析(DEA),另一种是随机前沿分析(SFA).由于SFA需先确定随机前沿生产函数,而生产函数的参数一般很难确定,且含有很多主观性因素.因此,选择DEA测算碳排放效率,其计算公式为
φc=CI-SCICI=1-SCICI=YCICI, (1)
其中,φc表示碳排放效率,CI表示二氧化碳的實际投入量,SCI表示二氧化碳的损失量,YCI表示在一定产出水平下,达到最优状态时所需的二氧化碳投入量.
2.2 模型构建、指标说明及数据来源
数据包络分析(DEA)[23],是一种数学、运筹学、管理科学和数理经济学等多学科交叉的研究方法,可根据多个投入指标和多个产出指标,利用线性规划对具有可比性的同类型决策单元进行相对有效性评价[24].根据DEA中C2R模型和BCC模型,利用DEAP 2.1软件,测算碳排放效率.结合碳排放效率的定义,可认为二氧化碳排放量的投入冗余额是当年生产规模多余的部分,即为二氧化碳的损失量SCI,则可根据公式(1)计算出当年碳排放效率.
资本、劳动力和技术是经济活动的基本生产要素,也一直被视为测算全要素碳排放效率的必要投入要素.再结合前文DEA选择输入和输出指标的原则,本文选取GDP(y)作为输出指标,资本存量(x1)、劳动力投入(x2)、能源消费量(x3)、二氧化碳排放量(x4)作为输入指标.
其中,经济增长是所有经济活动的最终目的,是重要的产出指标,而GDP是衡量经济增长的主要指标.资本存量指的是现有的全部资本资源,主要分为正在参与再生产的资产存量和处于闲置状态的资产存量,可以反映资本投入情况.劳动力投入是从事一定社会劳动并且取得相应劳动报酬的人员数,即就业人员数.由于技术是能源消费量和二氧化碳排放量的主要影响因素,当技术水平高时,能源消费量和二氧化碳排放量会有所下降.因此,可用这两个指标表示技术这一生产要素.
以2000年为基期,根据《中国统计年鉴》、《中国能源统计年鉴》,计算整理出实际资本存量与实际GDP,其中2000~2014年二氧化碳排放量数据来源于世界银行数据库,2015年和2016年数据则是根据赵爱文和李东[25]的方法计算得到,计算公式为:
Q=∑ni=1EiE×QiEi×E=∑ni=1Si×fi×E, (2)
其中,Q表示二氧化碳排放总量,Ei表示第i种能源的消耗量,E表示能源消费总量,Qi表示第i种能源的二氧化碳排放量,Si表示第i种能源消耗量在能源消耗总量中所占的比例,fi表示第i种能源的排放系数.根据煤炭、焦炭、原油、汽油、煤油、柴油、燃料油和天然气八种能源二氧化碳排放系数及其消费量,估算2015年和2016年二氧化碳排放量,分别为1009889.41万吨和991787.54万吨.
3 我国碳排放效率实证分析
本文利用DEA方法中C2R模型和BCC模型,测算2000-2016年我国碳排放效率,从综合效率、纯技术效率、规模效率和投入冗余率及产出不足率方面,分析碳排放效率;再以碳排放效率为因变量,产业结构、能源消费结构为自变量,建立多元线性回归模型,分析碳排放效率影响因素.
DEA要求各输入指标与输出指标之间必须满足“同向性”假设,即随着输入指标的增加,输出指标不得减少.本文采用Pearson相关性检验,利用SPSS 24.0软件,检验所选数据,输出结果如表1所示.
由表1可以看出,本文所选取的输入指标与输入指标之间的相关系数均很大,即GDP与资本存量、劳动力投入、能源消费量、二氧化碳排放量的相关系数分别为0.757,0.992,0.884和0.831,且对应的显著性水平均小于0.05,拒绝原假设,即通过显著性检验,说明他们之间存在显著的正相关性关系,符合DEA的“同向性”原则,可建立模型.
根据前文分析,可设:在规模收益不变的情况下,17个决策单元(DEMj,1≤j≤17),每个决策单元有4个输入指标,1个输出指标,对应的权系数分别为u=(u1,u2,…,u4)T,ν=νT1.C2R模型的目标函数为:
α0=min [θ-ε(TS-+eTS+)]. (3)
约束条件为:
s.t.∑nj=1xjλj+S-=θx0,
∑nj=1yjλj-S+=y0.(4)
其中,α0表示综合效率,T=(1,1,…,1)T∈E4,e=(1,1,…,1)T∈E1;ε是一个非阿基米德无穷小量,ε>0,且小于任何正数;xj和yj分别表示DEMj的输入投入量和输出产出量,1≤j≤17;S+和S-分别表示剩余变量和松弛变量.
BCC模型与C2R模型的主要区别在于前提条件不一样,前者是在规模收益可变的情况下建立模型.在C2R模型基础上,再引入一个约束条件∑nj=1λj=1(1≤j≤17)即可,形式与C2R模型一致,在此不再赘述.
根据DEA中C2R模型和BCC模型,利用DEAP 2.1软件,输出结果如表2和表3所示.
3.1 综合效率分析
综合效率(α0)指最优规模时,投入要素的生产效率,可从资源配置、资源利用率等多方面,综合评价决策单元.当α0=1时,则DEA有效;当α0>1时,则DEA无效.
由表2可知,我国仅在2000年和2016年的碳排放综合效率系数为1,这说明我国在这两年中的碳排放综合效率处于最优状态,即DEA有效.而从2001-2015年这15年的碳排放综合效率系数均小于1,表明我国在这十几年中的碳排放综合效率均没有处于最优状态,属于DEA无效.其中,2007年的综合效率系数为0.998,与1非常接近;而2010年的综合效率系数最小,为0.909.由此可见,这段时间的能源没有得到最优的配置,能源利用效率没有达到最佳状态,仍有提升的空间.
style='font-size:10.5pt;font-family:宋体;mso-bidi-font-family:宋体; mso-ansi-language:EN-US;mso-fareast-language:ZH-CN;mso-bidi-language:AR-SA'>我国作为世界上最大的发展中国家,碳排放量远高于世界平均水平,2005年我国碳排放总量就达到近60亿吨,成为全球第一排碳大国.中国作为负责任的大国,在多种场合展现了碳减排的决心.2009年,哥本哈根气候大会上,中国正式承诺:到2020年单位生产总值的二氧化碳排放比2005年下降40%~45%.在“十二五”规划中,明确提出:要把大幅降低二氧化碳排放作为约束性指标,碳排放强度下降17%,有效控制温室气体排放.“十三五”规划设定碳排放强度年均下降18%的目标,并综合考虑各省发展阶段、资源凛赋、战略定位、生态环保等因素,分类确定省级碳排放控制目标.党的十九大报告提出并强调,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾.改善空气质量,加强生态文明建设,成为当前政府工作的重中之重.本文基于C2R模型和BCC模型,测算2000-2016年我国碳排放效率,旨在全面考察我国碳排放约束政策的有效性,进而为推进生态文明建设提供参考依据.
3.2 纯技术效率分析
纯技术效率(β0)是由管理和技术等因素影响的生产效率.当β0=1时,则DEA有效;当β0<1时,则DEA无效.
由表2可知,我国在2000年、2001年、2007年和2016年的技术效率系数均为1,表明在这4年中,我国碳生产的技术有效,且碳排放的技术效率较好.而在其他13年中,技术效率的系数均小于1,表明这些年的碳排放技术效率没有达到最佳状态,还有不少的提升空间.
3.3 规模效率分析
规模效率(τ0)是由于规模因素影响的生产效率,可以反映实际规模与最优生产规模的差距,其计算公式为:规模效率=综合效率/纯技术效率,即τ0=α0/β0.当τ0>1时,处于规模收益递减状态,没有必要增加投入;当τ0<1时,处于规模收益递增状态,有必要增加投入;当τ0= 1时,处于规模收益不变狀态,此时投入规模最有效.
分析表2可知,我国在2000年和2016年的规模效率系数为1,说明这两年规模达到最优.而其他15年的规模效率系数均小于1,说明这些年均处于规模报酬递增状态,即产出的比例大于投入的比例,应该在原有的基础上,增加投入,以此获得更多收益.
综合三方面分析,2000年和2016年的综合效率、纯技术效率与规模效率均为1,均为有效,说明我国在这两年碳排放效率较好,没有投入需要减少、没有产出需要增加.而2007年的技术效率系数为1,是有效的,而综合效率系数和规模效率系数均为0.998,小于1为无效,这说明规模效率无效是导致综合效率无效的根本原因,即规模和投入、产出不相匹配,应该适当地缩小生产规模.同理可以得出,
2006年的规模也应该适当的缩小,其他年份的规模则应该适当增加.分析2000-2006年的各碳排放效率变化曲线(如图1所示),不难发现,综合效率与规模效率变化曲线相似,且波动相对较大,而技术效率变化曲线基本在0.980至1之间波动,波动幅度相对较小,表明规模效率是否有效决定着综合效率有效与否.
3.4 投入冗余率和产出不足率分析
投入冗余率是指各个投入指标的松弛变量与其投入指标的比率,取值范围均为[0,1],可反映该指标在投入中可节约的比例.产出不足率则是指各个产出指标的剩余变量与其产出指标的比率,取值范围均为[0,1],可反映该指标可以使产出增加的比例.综合这两个指标,可判断决策单元投入的合理性,发现需要改进的地方.
分析表2可知,我国在2000年和2016年的规模效率系数为1,说明这两年规模达到最优.而其他15年的规模效率系数均小于1,说明这些年均处于规模报酬递增状态,即产出的比例大于投入的比例,应该在原有的基础上,增加投入,以此获得更多收益.
分析表3可知,2000年、2001年、2007年以及2016年我国不存在投入冗余和产出不足的现象.此外,其他年份我国不存在碳排放产出不足的现象,但存在投入冗余现象.如2002年我國资本、能源和二氧化碳排放均存在投入冗余,对应的松弛变量分别为S-1 = 32.23,S-3 = 5452.31,S-4 = 5805.41,对应的投入冗余率分别为0.07%、3.22%和1.51%,这表明我国在这一年的资本投入量、能源消费量和二氧化碳量排放量均过多.同理,在2006年我国也存在能源消费量和二氧化碳量排放量的投入冗余,即二氧化碳排放量过高,松弛变量分别为S-3 = 23560.70,S-4 = 56051.33,对应的投入冗余率分别为8.22%,8.58%.
整体而言,近17年来,我国不存在劳动投入冗余,大多数年份均存在资本、能源和二氧化碳排放投入冗余,如图2所示.分析能源和二氧化碳排放投入冗余率的变化曲线,发现资本存量的冗余率与其他两个指标的冗余率相比,波动幅度较小,2010年最大,为8.54%;而能源投入冗余率与二氧化碳排放投入冗余率变化曲线相似,且波动较大,2005年最大,各自为21.66%和20.17%.而同年资本投入冗余率仅有2.10%,相对较小,可初步判断能源消费情况会影响二氧化碳排放量.2007年时投入冗余率均为0,且从2008年之后均呈下降趋势,表明这些年来,我国二氧化碳排放量有所下降,即说明我国在发展经济的同时,也在不断地研发新技术,寻找合理能源配置,来提高能源利用率,从而减少二氧化碳排放量.根据二氧化碳排放投入冗余率,计算出碳排放效率,发现在2000-2016年间,我国碳排放效率相对较高,在2000、2001、2007和2016年时最高,达到1.
综上分析可知:在2000-2016年这17年间,只有2000年、2001年、2007年和2016年碳排放量不存在投入冗余,即碳排放效率为1,且仅有2000年和2016年综合效率是有效的,即表明这两年碳排放效率达到最佳状态.
4 结论与政策建议
本文利用C2R模型和BCC模型,测算碳排放效率,我国碳排放效率大多小于1,未处于最佳规模报酬状态,即投入资源未得到充分利用,改进空间仍然很大.
参考文献
[1] RHEIN, M,RINTOUL, S.R,AOKI, S.Climate Change 2013 The Phisical Science Basis[R]. Switzerland:Intergovernmental Panel on Climate Change(IPCC),2013.
[2] PETERS G P, C LE QUR, ANDREW R M,et al. Towards realtime verification of CO2 emissions[J]. Nature Climate Change, 2017(7):848-850.
[3] WENDLING Z, EMERSON J, ESTY D, LEVY M A. 2018 Environmental Performance Index (EPI)[R]. New Haven(USA):Yale Center for Environmental Law & Policy, Yale University,2018.
[4] 生态环境部环境规划院. 中国经济生态生产总值核算发展报告2018[R]. 北京:生态环境部环境规划院,2018.
[5] KULMALA M.Atmospheric chemistry: Chinas choking cocktail[J]. Nature,2015,526(7574):97-506.
[6] ANG B W, ZHANG F Q, CHOI K H. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy,1998,2(6):489-495.
[7] ZAIM O,TASKIN F. Environmental Efficiency in Carbon Dioxide Emissions in the OECD:a Nonparamatric Approach[J]. Journal of Environmental Management,2000,58(2): 95-107.
[8] ZOFIO J L, PRIETO A M. Environmental efficiency and regulatory standards:the case of CO2 emissions from OECD industries[J].Resource and Energy Economics,2001,23(1):63-83.
[9] ZHOU P, ANG B W, POH K L. Slacksbased Efficiency Measures for Modeling Environmental Performance[J]. Ecological Economics,2006,60(1):111-118.
[10]ZHOU P,ANG B W,WANG H. Energy and CO2 Emission Performance in Electricity Generation:A Nonradial Directional Distance Function Approach [J]. European Journal of Operational Research,2012,221(3):625-635.
[11]RAMLI N A,MUNISAMY S,ARABI B. Scale Directional Distance Function and Its Application to the Measurement of Ecoefficiency in the Manufacturing Sector [J].Annals of Operations Research,2013,211(11):381-398.
[12]WISE M, DOOLEY J, LUCKOW P, et al. Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to midcentury.[J]. Applied Energy, 2014, 114(2):763-773.
[13]ALAMDARLO H N. Water consumption, agriculture value added and carbon dioxide emission in Iran,environmental Kuznets curve hypothesis[J]. International Journal of Environmental Science & Technology, 2016, 13(8):2079-2090.
[14]ANG B W, SU B. Carbon emission intensity in electricity production: A global analysis[J]. Energy Policy, 2016, 94(1):56-63.
[15]王群偉,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,24(1):45-54.
[16]张苗,甘臣林和陈银蓉.基于SBM模型的土地集约利用碳排放效率分析与低碳优化[J].中国土地科学,2016,30(3):37-45.
[17]董捷,员开奇.湖北省土地利用碳排放总量及其研究[J].水土保持通报,2016,36(2): 337-342.
[18]田原,朱淑珍,陈炜.中国金融环境与碳市场发展的关联度及作用分析——基于G20背景[J].财经理论与实践,2017,38(05):20-26.
[19]谭显春,赖海萍,顾佰和,涂唐奇,李辉. 主体功能区视角下的碳排放核算——以广东省为例[J].生态学报, 2018,38(17):6292~6301.
[20]舒心,夏楚瑜,李艳,童菊儿,史舟. 长三角城市群碳排放与城市用地增长及形态的关系[J].生态学报,2018, 38(17):6302-6313.
[21]胡宗义,王天琦.人口结构和经济增长对碳排放的影响分析[J].经济数学,2018,35(3):1-7.
[22]张强.“丝绸之路经济带”中国段交通运输业碳排放效率分析——基于Luenberger生产率指数法[J].湖南大学学报(社会科学版),2018,32(05):78-84.
[23]CHARNES A, COOPER W , RHODES E. Measuring the efficiency of decision making units[J].European Journal of Operational Research,1978(2):429-444.
[24]魏权龄,岳明.DEA概论与C2R模型-数据包络分析[J].系统工程理论与实践,1989,9 (1):2-69.
[25]赵爱文,李东.中国碳排放与经济增长间脱钩关系的实证分析[J].技术经济,2013,32(1):106-111.