非编码RNA与急性肾损伤相关性的研究进展
2019-06-20王立涛连兴基谭宁
王立涛 连兴基 谭宁
[摘要] 急性肾损伤(AKI)是一种以肾功能迅速下降、高死亡率为特征的常见严重疾病。然而,AKI的分子机制尚未明确,且缺乏有效的治疗方法。非编码RNA(ncRNAs)通过调控炎性反应、细胞程序性死亡、修复阶段的细胞周期等机制参与AKI发生的病理生理过程。因此,多种ncRNAs不仅被视为AKI的新型生物标志物,而且有望成为潜在的治疗靶点。本文综述了ncRNAs在AKI中的變化、功能及潜在治疗作用。
[关键词] 非编码RNA;急性肾损伤;生物标志物;研究进展
[中图分类号] R692 [文献标识码] A [文章编号] 1673-7210(2019)05(a)-0038-04
Research progress on the relationship between non-coding RNA and acute kidney injury
WANG Litao1,2 LIAN Xingji3 TAN Ning2 LIU Yuanhui2
1.School of Medicine, South China University of Technology, Guangdong Province, Guangzhou 510006, China; 2.Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou 510100, China; 3.Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Province, Guangzhou 510100, China
[Abstract] Acute kidney injury (AKI) is a common serious disease characterized by rapid decline in renal function and high mortality. However, the molecular mechanism of AKI is still unclear and there is no effective treatment. Non-coding RNA (ncRNAs) participate in the pathophysiological process of AKI by regulating inflammatory response, programmed cell death and cell cycle in repair phase. Therefore, a variety of ncRNAs are not only considered as new biomarkers of AKI, but also potential therapeutic targets. This article reviews the changes, functions and potential therapeutic effects of ncRNAs in AKI.
[Key words] Non-coding RNA; Acute kidney injury; Biomarker; Research progress
急性肾损伤(AKI)是以肾小球滤过率急剧减退为特征的临床综合征,可显著增加患者住院天数、医疗费用及死亡率等不良结局[1]。AKI的主要病理特征包括炎症细胞浸润、炎性细胞因子产生、凋亡和坏死等[2]。尽管相关研究已取得极大进展,但AKI的病理生理机制仍未明确。近来,越来越多的研究[3]表明非编码RNA(ncRNAs),尤其是微小RNA(miRNAs),与AKI相关。同时,其有可能成为AKI的诊断标志物或治疗靶点[4]。本文综述了miRNAs、长链非编码RNA(lncRNAs)、环形RNA分子(circRNAs)在AKI中的研究进展。
1 ncRNAs及其分类
ncRNAs是指一类在生物体中广泛表达而无蛋白编码功能的RNA。ncRNAs可被分为两组,即管家ncRNA和调控ncRNA。根据ncRNAs的片段大小,后者又可被分为三种类型,即miRNAs、lncRNAs和circRNAs[5]。
miRNAs是一种具有多种生物学功能的内源性ncRNAs,其在糖尿病肾病、IgA肾病、AKI等肾脏疾病中具有关键作用[6]。尽管miRNAs不编码蛋白质,但其能够通过与目标mRNA的3′非转录区(3′-UTR)互补结合,抑制蛋白质的翻译并负反馈调节靶基因的表达[7]。
lncRNAs长度超过200 nt,并具有复杂多样的作用机制,包括基因印记、剪切调控、染色质重塑、细胞周期调控,并参与信使RNA降解和翻译调控等[8-9]。lncRNAs在增殖和分化等多种生物学过程中具有重要作用,提示lncRNAs可能在AKI中起到一定作用[10]。
circRNAs是一类通过可变剪接形成的内源性ncRNAs,其在哺乳动物中发挥基因调控作用。circRNAs最初被认为是一种剪接错误,且丰度较低,但目前其在基因调控中的作用越来越受到重视[11]。尽管circRNAs在肾脏疾病中的作用尚未明确,但circRNAs在肾脏内高表达,同时考虑到其在调节细胞周期及细胞程序性死亡方面的作用,circRNAs可能参与AKI的调控[12]。
2 miRNAs在AKI中的作用
AKI病因多样、机制复杂、预后不确定,miRNAs谱可为其发病机制研究提供有价值的解读。Wei等[13]首次报道miRNAs在缺血性AKI中的重要性,该研究通过构建肾近曲小管Dicer(一种合成miRNAs所必需的酶)特异性、基因组敲除的转基因小鼠模型,发现其肾皮质miRNAs表达下调,且敲除型小鼠对AKI的抵抗力比野生型小鼠更强,主要表现为肾功能明显改善,组织损伤和肾小管凋亡减少以及存活率更高。同时,miRNAs在血浆及尿液中的高度特异性及敏感性,使miRNAs有望成为监测AKI疾病进程的重要生物标志物[14]。
多种miRNAs参与调控AKI的细胞程序性死亡。Jia等[15]发现,在败血症AKI中,沉默miRNA-21可促进细胞死亡,而过表达miRNA-21可通过抑制PDCD4而抑制细胞死亡。前期研究[16]也发现miRNA-21可通过上述机制保护肾脏细胞抵抗造影剂所致的肾损伤(CI-AKI)。Sun等[4]发现,在CI-AKI大鼠模型及患者血浆中,miRNA-188、miRNA-30a和miRNA-30e水平显著提高,并能用于区分CI-AKI和无CI-AKI患者,提示miRNAs可能是早期检测CI-AKI的潜在生物标志物。而Xu等[17-18]发现,miRNA-21在肾缺血再灌注损伤(IRI)中的作用是双向的,缺血预适应引起的miRNA-21表达上调,通过作用于PDCD4对保护肾功能,单独沉默miRNA-21并不能减轻肾损伤。上述研究提示miRNA-21在AKI中扮演不同的角色。
炎性反应也参与了AKI的病理过程。Amrouche等[19]发现,在人尿液、器官移植接受者以及单侧IRI小鼠模型中,miRNA-146a水平显著升高。miR-146a通过抑制IL-1受体相关性激酶1及CXCL8/CXCL1表达而保护肾功能。在单侧IRI小鼠模型中,敲除miRNA-146a后,肾小管损伤、炎症性浸润和纤维化加重。Ranganathan等[20]发现敲除miRNA-150后可通过抑制炎性反应及细胞凋亡减轻AKI。
除以上调控机制外,Alnasser等[21]发现,在胰岛素抵抗(IR)AKI中,自噬能够保护肾小管上皮细胞,其中miRNAs通过靶向作用于自噬相关基因调控细胞生存。Wang等[22]发现在IRI肾脏和低氧肾小管上皮细胞中,LC3和ATG16L1(自噬相关蛋白)表达上升,而miRNA-20a-5p表达下调。同时发现过表达的miRNA-20a-5p通过结合ATG16L1的3′-UTR抑制其转录。此外,肝细胞生长因子(HGF)具有组织修复作用,并且受内源性miRNA-26a的调控。Gattai等[23]在甘油介导的大鼠AKI模型中发现,miRNA-26a可通过调控HGF而促进肾脏修复。
3 lncRNAs在AKI中的作用
lncRNAs是新发现的在不同组织器官中调节生物活性的胞内ncRNAs。lncRNAs是包括AKI在内的多种疾病的重要调控因子。近年来,研究者通过RNA测序技术和基因芯片分析等方法评价I/R动物损伤模型或AKI患者中lncRNAs的表达[24]。Chun等[25]通过基因芯片分析检测败血症AKI患者与对照组血清标本中lncRNAs的表达,发现在AKI组中有5361种lncRNAs表达上调,并有5928种lncRNAs表达下调,是对照组表达量的2倍以上。同时,某些lncRNAs通过靶向调控关键的细胞周期调控因子来调节细胞凋亡及增殖,如细胞周蛋白,周期蛋白依赖性激酶(CDK)和p53[26]。Geng等[27]在I/R肾损伤中发现,lncRNA GAS5过量表达可上调p53的表达水平,并促进肾小管上皮细胞凋亡。lncRNA Gadd7可通过参与CDK6转录后水平调控,在G1期抑制细胞周期[28]。
此外,Lorenzen等[24]在AKI危重患者的血液中检测到lncRNAs,并命名为TrAnscript Predicting Survival in AKI(TapSAKI)。TapSAKI存在于肾脏组织中,且在AKI患者血浆中表达上调。TapSAKI的浓度与疾病严重程度相关,且其在缺氧管状上皮细胞中富集。提示TapSAKI或许能作为一种特异性的AKI预后生物标志物。Chen等[29]在AKI患者的血液中检测到lncRNA NEAT1,发现上调NEAT1的表达可通过负调节miRNA-204和激活NF-κB通路加重脂多糖(LPS)诱导的肾损伤。因此,NEAT1可能可作为AKI的诊断标志物和治疗靶点。此外,Malat1通过调控miRNA-146a/NF-κB信号通路调节LPS诱导的AKI[30]。但Malte等[31]却发现单侧I/R肾损伤的Malat1敲除小鼠与野生型小鼠比较,其表现出同等程度的外髓损伤、毛细血管稀薄化、纤维化、炎症细胞浸润、炎症基因表达。提示lncRNA-Malat1对肾IRI是非必需的。
综上所述,lncRNAs在多个环节调控特异性基因的表达,预示了lncRNAs在AKI发生及进展中的重要作用。
4 circRNAs在AKI中的作用
circRNAs在疾病中的作用已受到越来越多的关注。尽管circRNAs在某些肾脏疾病中的作用已有报道,如狼疮性肾炎和高血压性肾病,但其在AKI中的功能却知之甚少[12,32]。Dang等[33]通过基因芯片分析发现,在缺氧的人脐静脉内皮细胞(HUVECs)中,有14种circRNAs表达上调,22种circRNAs表達下调。其中,hsa_circ_0010729上调最为明显,并能够通过miRNA-186/HIF-1α通路促进血管内皮细胞增殖、迁移,抑制细胞凋亡,此结果对AKI的恢复或有重要意义。Lin等[34]研究发现,在经氧糖剥夺/复糖复氧处理的HT22细胞中mmu-circRNA-015947表达显著上调;生物信息学分析显示,其能与多种miRNAs相互作用,从而提高靶基因的表达;KEGG通路分析提示,mmu-circRNA-015947或许在与细胞凋亡、代谢及免疫相关的信号通路中发挥作用,进而参与IRI的调控。以上发现提示circRNAs在促进细胞增殖和调控I/R损伤中具有重要作用,也提示circRNAs具有修复AKI的潜在可能。
circRNAs的典型特征即“頭尾”连接,并具有结合并隔离miRNAs的细胞功能,但这种相互作用仅见于有大量结合位点的特定miRNAs中[35]。K?觟lling等[36]通过检测需行肾替代治疗的AKI患者与对照组患者的circRNAs水平发现,circRNAs-126能通过吸附miRNA-126-5p,导致AKI患者及缺氧内皮细胞中的miRNA-126-5p表达下降。此外,circRNAs-126可作为AKI Ⅲ期患者死亡的独立预后因素,因此circRNAs-126或许可作为无创性反应miRNAs调节异常的RNA水平生物标志物。
5 讨论与展望
近几年,ncRNAs在AKI中的研究取得较大的进展。ncRNAs通过靶向调控肾脏疾病发生进展中关键基因的表达以及调控参与细胞凋亡和炎症的信号通路,从而调节AKI进程。因此,在体靶向抑制或上调ncRNAs的表达可能成为未来AKI治疗策略的新方向。越来越多的证据表明多种miRNAs在AKI中具有重要功能和治疗潜力,这为AKI的分子机制研究和临床治疗提供了新思路。同时,针对包括AKI在内的多种疾病,越来越多的研究集中探讨在组织中高表达及疾病特异性的lncRNAs和circRNAs的治疗潜能以及其作为AKI诊断预后生物标志物的潜能。然而,由于ncRNAs丰度较低,导致某些重要ncRNAs在实验研究中易被忽略;临床上难以获得不同时期AKI患者的充足样本,这限制了ncRNAs在AKI不同阶段中功能的研究。虽然面临这些挑战,但对AKI中ncRNAs分子机制了解的深入将对AKI的早期发现与后续治疗产生显著益处。
[参考文献]
[1] Hoste EAJ,Kellum JA,Selby NM,et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol,2018,14(10):607-625.
[2] Allison SJ. Acute kidney injury:AIMing to enhance debris clearance and improveoutcomes in AKI [J]. Nat Rev Nephrol, 2016,12(3):123.
[3] Fan PC,Chen CC,Chen YC,et al. MicroRNAs in acute kidney injury [J]. Hum Genomics,2016,10(1):29.
[4] Sun SQ,Zhang T,Ding D,et al. Circulating MicroRNA-188,-30a,and -30e as Early Biomarkers for Contrast-Induced Acute Kidney Injury [J]. J Am Heart Assoc,2016,5(8):e004138.
[5] Gomes AQ,Nolasco S,Soares H. Non-coding RNAs:multi-tasking molecules in the cell [J]. Int J Mol Sci,2013,14(8):16 010-16 039.
[6] Bhatt K,Kato M,Natarajan R. Mini-review:emerging roles of microRNAs in the pathophysiology of renal diseases [J]. Am J Physiol Renal Physiol,2016,310(2):F109-F118.
[7] Kim I,Kwak H,Lee HK,et al. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3′-UTR and interacts with HuR in colon cancer cells [J]. Nucleic Acids Res,2012,40(14):6863-6872.
[8] Hu S,Wang X,Shan G. Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing [J]. Nat Struct Mol Biol,2016,23(11):1011-1019.
[9] Villegas VE,Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs [J]. Int J Mol Sci,2015,16(2):3251-3266.
[10] Moran VA,Perera RJ,Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs [J]. Nucleic Acids Res,2012,40(14):6391-6400.
[11] Liu L,Wang J,Khanabdali R,et al. Circular RNAs:Isolation,characterization and their potential role in diseases [J]. RNA Biol,2017,14(12):1715-1721.
[12] Cheng X,Joe B. Circular RNAs in rat models of cardiovascular and renal diseases [J]. Physiol Genomics,2017, 49(9):484-490.
[13] Wei Q,Bhatt K,He HZ,et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol,2010,21(5):756-761.
[14] Lee SH,Ju HM,Choi JS,et al. Circulating Serum miRNA-205 as a Diagnostic Biomarker for Ototoxicity in Mice Treated with Aminoglycoside Antibiotics [J]. Int J Mol Sci,2018,19(9):2836.
[15] Jia P,Teng J,Zou J,et al. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway [J]. Crit Care Med,2015,43(7):e250-e259.
[16] Wang K,Bei WJ,Liu YH,et al. miR-21 attenuates contrast-induced renal cell apoptosis by targeting PDCD4 [J]. Mol Med Rep,2017,16(5):6757-6763.
[17] Xu X,Kriegel AJ,Jiao X,et al. miR-21 in ischemia/reperfusion injury:a double-edged sword [J] Physiol Genomics,2014,46(21):789-797.
[18] Xu X,Kriegel AJ,Liu Y,et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21 [J]. Kidney Int,2012,82(11):1167-1175.
[19] Amrouche L,Desbuissons G,Rabant M,et al. MicroRNA-146a in Human and Experimental Ischemic AKI:CXCL8-Dependent Mechanism of Action [J]. J Am Soc Nephrol,2017,28(2):479-493.
[20] Ranganathan P,Jayakumar C,Tang Y,et al. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury [J]. Am J Physiol Renal Physiol,2015,309(6):F551- F558.
[21] Alnasser HA,Guan Q,Zhang F,et al. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells [J]. Am J Physiol Renal Physiol,2016,310(2):F160- F173.
[22] Wang IK,Sun KT,Tsai TH,et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury [J]. Life Sci,2015,136:133-141.
[23] Gattai PP,Maquigussa E,da Silva Novaes A,et al. miR-26a modulates HGF and STAT3 effects on the kidney repair process in a glycerol-induced AKI model in rats [J]. J Cell Biochem,2018,119(9):7757-7766.
[24] Lorenzen JM,Schauerte C,Kielstein JT,et al. Circulating long noncoding RNA TapSaki is a predictor of mortality in critically ill patients with acute kidney injury [J]. Clin Chem,2015,61:191-201.
[25] Chun-Mei H,Qin-Min G,Shu-Ming P,et al. Expression profiling and ontology analysis of circulating long non-coding RNAs in septic acute kidney injury patients [J]. Clin Chem Lab Med,2016,54(12):e395-e399.
[26] Kitagawa M,Kitagawa K,Kotake Y,et al. Cell cycle regulation by long non-coding RNAs [J]. Cell Mol Life Sci,2013,70(24):4785-4794.
[27] Geng X,Xu X,Fang Y,et al. The effect of long noncoding RNA GAS5 on apoptosis in renal ischemia/reperfusion injury [J]. Nephrology(Carlton),2018.
[28] Liu X,Li D,Zhang W,et al. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay [J]. EMBO J,2012,31(23):4415-4427.
[29] Chen Y,Qiu J,Chen B,et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway [J]. Int Immunopharmacol,2018,59:252-260.
[30] Ding Y,Guo F,Zhu T,et al. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway [J]. Int J Mol Med,2018,41(1):446-454.
[31] Malte K?觟lling,Celina Genschel,Tamas Kaucsar,et al. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury [J]. Sci Rep,2018,8(1):3438.
[32] Ouyang Q,Huang Q,Jiang Z,et al. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis [J]. Mol Immunol,2018,101:531-538.
[33] Dang RY,Liu FL,Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis [J]. Biochem Biophys Res Commun,2017,490(2):104-110.
[34] Lin SP,Ye S,Long Y,et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury [J]. Biochem Biophys Res Commun,2016,471(1):52-56.
[35] Memczak S,Jens M,Elefsinioti A,et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature,2013,495(7441):333-338.
[36] K?觟lling M,Seeger H,Haddad G,et al. The Circular RNA ciRs-126 Predicts Survival in Critically Ill Patients With Acute Kidney Injury [J]. Kidney Int Rep,2018,3(5):1144-1152.
(收稿日期:2018-10-19 本文編辑:王 蕾)