hnRNPA2/B1在恶性肿瘤中的研究进展
2019-05-28刘雅雯张尤历徐岷
刘雅雯 张尤历 徐岷
[摘要] 核内不均一核糖核蛋白(hnRNPs)是一类RNA结合蛋白,主要參与RNA剪切、mRNA的加工、端粒合成、DNA修复、基因表达调控及蛋白质翻译等复杂多样的生物进程。hnRNPA2/B1属于该蛋白家族中的成员之一,其在人体大多数组织中表达且具有多种功能。研究发现hnRNPA2/B1在多种恶性肿瘤中均存在差异性表达,并且可参与调控基因的表达、促进增殖与迁移能力、抑制凋亡及调控肿瘤耐药,在恶性肿瘤的诊断、治疗以及预后判断等方面都具有重要的临床价值。本文就hnRNPA2/B1在肺癌、乳腺癌、胰腺癌及肝癌等多种恶性肿瘤中的研究进展作一综述。
[关键词] 核内不均一核糖核蛋白;hnRNPA2/B1;恶性肿瘤
[中图分类号] R730 [文献标识码] A [文章编号] 1673-7210(2019)04(c)-0023-04
[Abstract] Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins that play a key role in complex and various biological processes such as RNA splicing, mRNA processing, telomere synthesis, modulation of gene expression, translation of mRNAs. Heteregeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a member of this proteins family. hnRNPA2/B1 abundantly and ubiquitously expresses in most human tissues and has various functions. Researches indicate that hnRNPA2/B1 is abnormally expressed in diverse malignant tumors, and it can modulate the expression of genes, promote the abilities of proliferation and migration, inhibit apoptosis and regulate tumor resistance in tumors. It also shows that hnRNPA2/B1 has important clinical value in the diagnosis, treatment and prognosis of malignant tumors. Therefore, this paper reviews the development of hnRNPA2/B1 in diverse cancers, such as lung cancer, breast cancer, pancreatic cancer, liver cancer and so on.
[Key words] Heterogeneous nuclear ribonucleoproteins; hnRNPA2/B1; Malignant tumor
核内不均一核糖核蛋白(heterogeneous nuclear ribonucleoproteins,hnRNPs)属于RNA结合蛋白,其分子结构高度保守,该蛋白家族中至少含有20种蛋白,按照其分子量大小依次从A1至U进行命名[1]。每种hnRNP蛋白都至少包含一个RNA结合区域,如RNA识别元件(RNA recognition motif,RRM)、KH区(K-Homology domain,KH domain)及富含精氨酸/甘氨酸区等均为较常见的RNA结合区域[2]。研究表明hnRNPs在mRNA的加工[3]、可变剪切[4]、转录调控[5]、端粒合成[6]、细胞的增殖和凋亡[7-8]等过程中均发挥着重要的生物学功能。hnRNPA2和B1是两个结构同源蛋白,都属于hnRNPs蛋白家族,在大多数人类组织中广泛表达并具有重要的功能[2]。近年来研究表明hnRNPA2/B1在肺癌[15]、乳腺癌[16]、胰腺癌[19]和肝癌[23]等多种肿瘤的发生发展中均发挥了至关重要的作用。
1 hnRNPA2/B1与肺癌
在针对hnRNPA2/B1与肺癌的多项研究中表明,hnRNPA2/B1可作为检测早期肺癌潜在的生物标志物[2]。早期有研究[9-10]在患者痰液及支气管灌洗液标本中针对性地检测hnRNPA2/B1表达水平,研究发现,高表达的hnRNPA2/B1可用于检测肺癌,并且其敏感度和特异性均高于痰液和支气管灌洗液中细胞学检查及影像学检查。此外,免疫组化检测的结果表明,hnRNPA2/B1在肺癌患者的血清及组织中明显高表达,尤其在鳞癌中更为显著[11]。通过血清蛋白组学分析发现hnRNPA2/B1肺癌中可以引发自身免疫应答,其自身抗体不仅能够诊断没有临床症状的早期肺癌患者,还可用于识别肺癌风险的高危人群[12]。这为早期肺癌的诊断提供了新的途径。
进一步探究hnRNPA2/B1作用的具体分子机制发现,hnRNPA2/B1可直接与转录辅激活因子p300相互作用,被p300乙酰化后的hnRNPA2/B1能够促进与环氧合酶-2(COX-2)启动子的结合,从而能够提高COX-2的表达,并可促进非小细胞肺癌细胞的增殖能力[13]。在非小细胞肺癌中,长链非编码RNA CACNA1G-AS1作为hnRNPA2/B1的上游分子,可通过促进hnRNPA2/B1的表达来调节上皮-间质转化的过程,参与调控非小细胞肺癌的侵袭与迁移能力[14]。另有报道[15]指出转移抑制基因Nm23-H1能够增加hnRNPA2/B1蛋白质的稳定性,可共同募集到特异性蛋白-1(Sp1)mRNA的5′UTR,增强Sp1的翻译活性。由于Sp1在早期肺癌被诱导表达上调,晚期阶段表达下调。因此,Nm23-H1、hnRNPA2/B1和Sp1都可以被认为是肺癌的早期生物标志物,并且可用于评估肺癌的预后情况。以上研究结果表明,hnRNPA2/B1不仅可能成为诊断早期肺癌的生物标志物,可作为判断肺癌患者预后的指标,而且有望成为治疗肺癌的新靶点。
2 hnRNPA2/B1与乳腺癌
Hu等[16]研究发现,在乳腺癌组织样本中,hnRNPA2/B1显著高表达,此外,还发现乳腺癌细胞中hnRNPA2/B1的表达较正常乳腺上皮细胞明显上调,这表明hnRNPA2/B1能够作为临床生物标志物来诊断乳腺癌。在体外实验中,下调hnRNPA2/B1能够抑制乳腺癌细胞的增殖能力,并且使细胞S期延长,从而诱导细胞凋亡。进一步探究其机制发现下调hnRNPA2/B1可降低细胞转导及磷酸化转录激活因子3(signal transducer and activator of transcription 3,STAT3)与磷酸化的细胞外调节蛋白激酶(extra-cellular-signal-regulated kinase 1/2,ERK1/2)的表达。这表明,hnRNPA2/B1可通过激活STAT3和ERK1/2所介导的细胞信号通路来促进乳腺癌的发生。另外,hnRNPA2/B1作为剪切子能够与凋亡蛋白Bcl-x前mRNA相互作用并调节其选择性剪接,长链非编码RNABC200不仅可以促进两者的结合作用,而且能够通过结合位点形成BC200-Bcl-x-hnRNPA2/B1复合物抑制Bcl-xS的表达,与此同时,促进Bcl-xL的表达,从而促进乳腺癌细胞的增殖能力并且能够降低癌细胞对化疗药物的敏感性[17]。这为阐明乳腺癌的发生机制以及解决乳腺癌化疗耐药问题提供了一定的帮助。
3 hnRNPA2/B1与胰腺癌
研究[18]表明,hnRNPA2/B1能够通过参与胰腺癌的增殖、迁移、侵袭、凋亡以及耐药等多种生物学进程,在胰腺癌的发生发展过程中发挥了至关重要的作用。通过双向差异凝胶电泳技术发现,胰腺上皮内瘤变组和胰腺癌组大鼠模型中hnRNPA2/B1的表达较正常胰腺组相比均显著上调[18]。体外实验证明,上调hnRNPA2/B1的表达可以促进胰腺癌细胞的增殖能力,进一步研究发现hnRNPA2/B1可通过激活ERK/snail细胞信号传导通路下调上皮细胞的标志分子钙黏蛋白E(E-cadherin)、上调神经型钙黏蛋白N(N-cadherin)及波形蛋白(vimentin)的表达来促进胰腺癌细胞发生上皮-间质转化,从而促进胰腺癌的侵袭能力[19]。hnRNPA2/B1在KRAS依赖性的胰腺癌的发生发展中也扮演了重要的角色,hnRNPA2/B1可通过抑制PI3K/AKT/mTOR信号通路诱导KRAS依赖性的胰腺癌细胞系凋亡[20]。在胰腺癌耐药性研究[21]中发现,抑制hnRNPA2/B1表达可以诱导胰腺癌细胞凋亡,并能够提高胰腺癌细胞对吉西他滨、氟脲嘧啶和奥沙利铂的化疗药物的敏感性[21]。这不仅为hnRNPA2/B1作为胰腺癌治疗的潜在分子靶点奠定了基础,而且为hnRNPA2/B1用于预测胰腺癌患者化疗的敏感性提供了理论依据,但这仍需进一步的临床研究来证明。
4 hnRNPA2/B1与肝癌
与正常肝脏细胞相比,hnRNPA2/B1的mRNA及蛋白水平在肝癌细胞中高度表达,此外,相比于正常肝组织,hnRNPA2/B1在肝炎病毒阳性的肝组织和肝癌组织中过表达也十分显著[22]。此外,在肝炎病毒感染的肝组织中,hnRNPA2/B1仅存在于细胞核,而当肝癌从高分化阶段进展到低分化阶段时,hnRNPA2/B1在细胞质中表达增加,而细胞核内的表达明显降低[22]。另一报道通过临床病理分析,结果显示hnRNPA2/B1在细胞质中的表达量与肿瘤分化程度、微血管浸润程度以及肝癌患者的总体生存率显著相关,与仅在细胞核中表达hnRNPA2/B1的肝癌患者相比较,在细胞核与细胞质中均表达hnRNPA2/B1的患者的生存率明显降低[23]。这些研究结果提示检测hnRNPA2/B1的表达及其在胞质内定位情况不仅可用于肝癌的风险分层和治疗监测,而且可以作为肝癌患者总体生存率的独立预后因子,是非常有前景的诊断性生物标志物。
端粒位于真核生物染色体末端,保持染色体的完整性和控制细胞分裂周期,是控制细胞凋亡的重要因素。端粒酶可对端粒起修复作用,在正常情况下端粒酶的活性被抑制,但在肿瘤中可被重新激活参与恶性转化。通过免疫共沉淀实验分析肝癌细胞系样本时发现,hnRNPA2/B1可与端粒酶逆转录酶相互作用,在肝癌细胞中下调hnRNPA2/B1的表达可抑制端粒酶的活性,缩短端粒的长度,从而进一步影响肝癌细胞的增殖[23]。hnRNPA2/B1不仅可以影响端粒的合成,还可以作为RNA结合蛋白在肝癌的进展过程中起重要作用。通过RNA结合蛋白免疫沉淀实验(RNA-binding protein immunoprecipitation,RIP)发现,长链非编码RNA uc002mbe.2在曲古霉素A的诱导下可直接与hnRNPA2/B1结合并促进其降解,下调hnRNPA2/B1通过介导抑癌基因p21表达以及AKT失活,可使G2/M期的肝癌细胞增多,进而抑制肝癌细胞的生长增殖作用,并且能够诱导细胞凋亡过程[24]。另有研究[25]表明hnRNPA2/B1可以与长链非编码RNA miR503HG相结合,miR503HG可通过泛素蛋白酶体途径使hnRNPA2/B1降解,抑制肝细胞癌的转移能力。这些研究更加深入地阐明了肝癌的发病机制,同时也为肝癌的治疗提供了新的思路。
5 hnRNPA2/B1与其他肿瘤
Deng等[26]用免疫组化技術检测40例人脑胶质瘤组织及正常脑组织中hnRNPA2/B1的表达,发现脑胶质瘤组织中hnRNPA2/B1的表达明显高于正常脑组织,且hnRNPA2/B1的表达程度与脑胶质瘤的不良预后有关,这意味着hnRNPA2/B1可以作为判断脑胶质瘤预后的指标。干扰hnRNPA2/B1的表达可抑制体外胶质瘤细胞的增殖、减弱其迁移及侵袭能力并且能够诱导脑胶质瘤细胞凋亡。在hnRNPA2/B1与胃癌的研究中发现,hnRNPA2/B1在胃癌组织中异常高表达,并且可通过与癌基因和肿瘤抑制基因的相互作用影响肿瘤细胞分化[27]。进一步研究发现,随着胃癌不断地分化,hnRNPA2/B1可以从细胞核转移至细胞质中[28]。体内外实验均证明降低宫颈癌细胞中hnRNPA2/B1的表达,可以抑制癌细胞的增殖能力,还能够增加宫颈癌细胞对伊立替康联合洛铂化疗的敏感性,这些作用主要与PI3K/AKT信号传导通路有关[29]。
6 小結与展望
综上所述,hnRNPA2/B1在多种恶性肿瘤组织与细胞系中均存在差异性表达,并且与肿瘤的生长、转移及化疗耐药有关。此外,hnRNPA2/B1还可通过参与肿瘤相关基因的表达调控、mRNA的选择性剪切、端粒合成及调节肿瘤细胞周期等多种方式影响肿瘤的发生发展。这些研究结果对发现新的肿瘤生物标志物及诠释肿瘤的发生机制有重要意义,但其作用机制存在复杂性,有待进一步深入研究阐明。相信随着对hnRNPA2/B1研究日益展开,hnRNPA2/B1有望成为恶性肿瘤中新型生物标志物、基因治疗靶点及预后预测因子,在诊断、预后判断及治疗上均具有重要价值。
[参考文献]
[1] Li Z,Chen Q,An W,et al. Novel Pathological Role of hnRNPA1(Heterogeneous Nuclear Ribonucleoprotein A1)in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia [J]. Arterioscler Thromb Vasc Biol,2017,37(11):2182-2194.
[2] He Y,Smith R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B [J]. Cell Mol Life Sci,2009,66(7):1239-1256.
[3] Han SP,Tang YH,Smith R. Functional diversity of the hnRNPs:past,present and perspectives [J]. Biochem J,2010, 430(3):379-392.
[4] Chen M,Zhang J,Manley JL. Turning on a fuel switch of cancer-nRNP proteins regulate alternative splicing of pyruvate kinase mRNA [J]. Cancer Res,2010,70(22):8977-8980.
[5] Lemieux B,Blanchette M,Monette A,et al. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation [J]. PLoS One,2015,10(5):e0126654.
[6] El-Mazny A,Sayed M,Sharaf S. Human telomerase reverse transcriptase messenger RNA(TERT mRNA)as a tumour marker for early detection of hepatocellular carcinoma [J]. Arab J Gastroenterol,2014,15(2):68-71.
[7] Wang K,Ling T,Wu H,et al. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation,of the methylation of gene promoters in oral squamous cell carcinoma [J]. Oncol Rep,2013,29(3):1175-1182.
[8] Chen T,Cui P,Chen H,et al. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis [J]. PLoS Genet,2013,9(10):e1003875.
[9] Tockman MS,Mulshine JL,Piantadosi S,et al. Prospective detection of preclinical lung cancer:results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression [J]. Clin Cancer Res,1997,3(12 Pt 1):2237-2246.
[10] Fielding P,Turnbull L,Prime W,et al. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens:a clinical marker of early lung cancer detection [J]. Clin Cancer Res,1999,5(12):4048-4052.
[11] Dowling P,Pollard D,Larkin A,et al. Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1(hnRNPA2B1)in tumour tissue and blood samples from patients diagnosed with lung cancer [J]. Mol Biosyst,2015,11(3):743-752.
[12] Dai L,Li J,Tsay JJ,et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer [J]. Oncoimmunology,2017,6(5):e1310359.
[13] Xuan Y,Wang J,Ban L,et al. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers [J]. Mol Oncol,2016,10(4):610-624.
[14] Yu PF,Kang AR,Jing LJ,et al. Long non-coding RNA CACNA1G-AS1 promotes cell migration,invasion and epithelial-mesenchymal transition by HNRNPA2B1 in non-small cell lung cancer [J]. Eur Rev Med Pharmacol Sci,2018,22(4):993.
[15] Hung CY,Wang YC,Chuang JY,et al. Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site(IRES)-mediated translation of Sp1 in the lung cancer progression [J]. Sci Rep,2017,7(1):9166.
[16] Hu Y,Sun Z,Deng J,et al. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway [J]. Tumour Biol,2017,39(3):1010428317694318.
[17] Singh R,Gupta SC,Peng WX,et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis [J]. Cell Death & Disease,2016,7(6):e2262.
[18] Wang L,Liu HL,Li Y,et al. Proteomic analysis of pancreatic intraepithelial neoplasia and pancreatic carcinoma in rat models [J]. World J Gastroenterol,2011,17(11):1434-1441.
[19] Dai S,Jie Z,Huang S,et al. HNRNPA2B1 regulates the epithelial-mesenchymal transition in pancreatic cancer cells through the ERK/snail signalling pathway [J]. Cancer Cell Int,2017,17:12.
[20] Barceló C,Etchin J,Mansour MR,et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells [J]. Gastroenterology,2014,147(4):882-892.
[21] Gu WJ,Liu HL. Induction of pancreatic cancer cell apoptosis,invasion,migration,and enhancement of chemotherapy sensitivity of gemcitabine,5-FU,and oxaliplatin by hnRNP A2/B1 siRNA [J]. Anticancer Drugs,2013,24(6):566-576.
[22] Cui H,Feng W,Sun Y,et al. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma [J]. BMC Cancer,2010,10:356.
[23] Mizuno H,Honda M,Shirasaki T,et al. Heterogeneous nuclear ribonucleoprotein A2/B1 in association with hTERT is a potential biomarker for hepatocellular carcinoma [J]. Liver Int,2012,32(7):1146-1155.
[24] Chen T,Gu C,Xue C,et al. LncRNA-uc002mbe.2 Interacting with hnRNPA2B1 Mediates AKT Deactivation and p21 Up-Regulation Induced by Trichostatin in Liver Cancer Cells [J]. Front Pharmacol,2017,8:669.
[25] Wang H,Liang L,Dong Q,et al. Long noncoding RNA miR503HG,a prognostic indicator,inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma [J]. Theranostics,2018:2814-2829.
[26] Deng J,Song C,Feng W,et al. Effects of hnRNP A2/B1 Knockdown on Inhibition of Glioblastoma Cell Invasion,Growth and Survival [J]. Mol Neurobiol,2016,53(2):1132-1144.
[27] Dai P,Wang Q,Wang W,et al. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis [J]. Int J Mol Sci,2016,17(1):E69.
[28] Jing GJ,Xu DH,Shi SL,et al. Aberrant expression and localization of hnRNP-A2/B1 is a common event in human gastric adenocarcinoma [J]. J Gastroenterol Hepatol,2011,26(1):108-115.
[29] Shi X,Ran L,Liu Y,et al. Knockdown of hnRNP A2/B1 inhibits cell proliferation,invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway [J]. Oncol Rep,2018,39(3):939-950.
(收稿日期:2018-10-25 本文編辑:金 虹)