基于Hi-C技术哺乳动物三维基因组研究进展
2019-03-19宁椿游何梦楠唐茜子朱庆李明洲李地艳
宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳
基于Hi-C技术哺乳动物三维基因组研究进展
宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳
四川农业大学动物科技学院,动物遗传育种研究所,成都 611130
基因组DNA在细胞核中并不是呈线性的一字排列,而是以三维结构高度折叠并浓缩成染色质的方式储存于核内,具有特定的高级空间结构和构象。高通量染色体构象捕获(high-througnput chromosome conformation capture, Hi-C)技术于2009年首次被提出,目前已得到大规模运用,使得人们对于三维基因组学有了更深刻的认识。研究表明,哺乳动物基因组三维层级结构单元由大到小依次为染色体疆域(chromosome territory, CT)、染色质区室(chromatin compartment A/B)、拓扑关联结构域(topological associated domain, TAD)和染色质环(chromatin loop),这些层级结构单元在基因转录和表达调控过程中发挥着重要作用。本文基于Hi-C技术从染色质的三维层级结构划分、构象单元作用以及三维基因组在发育、疾病等方面的应用进行阐述,旨在为更深入地了解哺乳动物三维基因组学研究提供参考。
三维基因组学;染色质空间构象;Hi-C技术;基因表达调控
染色质是遗传物质的载体,其活性和功能由线性的基因组序列、序列之间的相互作用和动态变化的染色质三维空间构象共同决定。早期对基因的表达调控研究大都是基于一维(基因序列)和二维(不同序列的相互作用)的层面,将基因组作为线性分子模型去研究机体或细胞内的各种调控机理。随着更多的一维和二维基因组数据的产生,现有的线性模型不足以揭示这些离散的调控元件、结构变异与基因功能的联系。由此,基于染色质空间构象解释基因表达调控机制的三维基因组学应运而生。
2009年,Lieberman-Aiden等[1]在上首次报道了以整个细胞核为研究对象,利用高通量测序技术,结合生物信息学分析方法,研究全基因组范围内DNA序列在空间位置上任意两位点间互作关系的高通量染色体构象捕获(high-througnput chromosome conformation capture, Hi-C)技术。Hi-C及其衍生技术的出现,使得人们能够从技术上突破对于三维基因组学认识的障碍。三维基因组学研究能够解释那些距离目标基因几kb甚至几Mb的调控元件如何调控基因表达[2],其研究重点在于解析细胞核内染色质的不同空间构象及其结构单元,探究不同类型的结构单元如何介导转录调控元件与基因间的互作关系,从而阐明基因功能与转录调控的分子机制。本文通过目前已有的研究,对哺乳动物细胞核内三维基因组结构划分、构象单元作用以及目前Hi-C技术在三维基因组学应用等方面进行了介绍。
1 哺乳动物三维基因组的结构单元
目前,部分哺乳动物和其他真核生物的细胞核内染色质三维折叠组装的基本规律被揭示[3]。在哺乳动物细胞核内,染色质以严密的层级结构折叠组装成高级构象,这些层级结构单元由大到小依次为染色体疆域(chromosome territory, CT)、染色质区室(chromatin compartment A/B)、拓扑关联结构域(topological associated domain, TAD)和染色质环(chromatin loop)[4,5](图1)。其中,染色体疆域是普遍存在的基因组空间结构,不同的染色体在细胞核内占据不同的疆域;染色质区室是由基因组表观状态所决定的较大的结构单元,与染色质活性密切相关;拓扑关联结构域是细胞核内稳定存在的空间结构单元,在局部范围内介导基因的表达调控;染色质环是直接调控基因表达的最精细的结构和功能单元,通常由启动子与远端增强子互作形成,在介导基因的转录激活中发挥着重要作用。
1.1 染色体疆域
早在20世纪,细胞学家Theodore Boveri研究蛔虫()间期核中的染色质时,发现染色质在细胞核中并非随机排列[6]。后来的研究发现,每条染色体在间期中都各自占据了一块特定的不重叠的核区域,即染色体疆域(CT)[7]。不同染色体之间的重叠仅限于CTs的边界[8]。CTs的定位与其基因密度有关,不同基因密度的CTs占据着不同的核位置[9]。在CTs中,每条染色体都被限制在各自具体的核空间中,仅仅一小部分延伸到邻近的核空间中,因此染色体折叠形成CT被认为是内部核运动的屏障[4,10]。CTs的定位还与细胞类型的特异性因素如复制时间和转录活性相关,早期复制位点和活性基因倾向定位于细胞核内部,而晚期复制位点和抑制基因倾向于核边缘[11,12]。Solovei等[13]发现,与白天活动的动物和大多数真核生物相比,夜行哺乳动物的视网膜杆状细胞中的CT位置是倒置的。在夜行性视网膜杆状细胞中,异染色质定位于核中心,常染色质位于核外围。核组织的模型计算发现这种倒置的CT结构形式能够有效地引导光线,从而有助于夜行动物适应夜晚的生活方式。
1.2 染色体区室
2009年,Lieberman-Aiden等[1]首次运用Hi-C技术揭示了人淋巴母细胞(GM06990)的三维基因组结构。该研究证实了之前通过3C (chromosome conformation capture)技术和3D-FISH (3D fluorescencehybridization)技术发现的CTs的存在,即那些较小的、基因富集(gene-rich)的染色体在空间上更接近。对同一条染色体内部互作(interaction)进行分析发现,染色质间互作强度随着基因组线性距离的增加而降低,且同一条染色体内部互作强度高于不同染色体间的互作。该研究也首次提出了基因组空间结构的另一重要特征,即染色质是由compartment A和B两种基因组间隔区交叉分布构成(图2)。同一种compartment内部具有更高的染色质互作频率,且在同一线性距离上,compartment B之间的互作频率高于compartment A。其中,compartment A为开放(open)染色质区室,多为常染色质,是基因富集区域,GC含量高,基因高表达;而compartment B为封闭(close)染色质区室,多为异染色质区域,通常是基因沙漠(gene-desert)区域,GC含量低,基因表达量相对compartment A低。Compartment A和B的特征与其他基因组和表观特征呈现高度相关,其中compartment A区域有激活的染色质标签H3K36me3,具有更高的染色质可接近性(DNAseⅠ高度敏感),而compartment B与抑制性组蛋白标签H3K27me3高度相关。因此,compartment A是更加开放的、可接近的、转录激活的染色质区域。
图1 哺乳动物细胞核内染色质的层级结构
高阶染色质结构是基因表达的重要调节因子。虽然在基因组中已经发现了动态染色质结构,但在哺乳动物发育和谱系规范中染色质动态的完整范围仍有待确定。美国加州大学Bing Ren 教授及其团队通过绘制人类ES细胞核4个ES细胞衍生谱系的全基因组染色质相互作用图谱,揭示了在谱系规范中广泛的染色质重组[14]。在胚胎干细胞分化成4种特定细胞系的过程中,至少有36%的基因组发生了空间可塑性重排(即compartment A/B switch)。这些重排与特定的细胞功能相关,B到A状态改变的基因倾向于更高表达,而A到B状态改变的基因倾向于更低的表达。这说明在一个全局范围内,compartment A/B具有较高可塑性,并且与细胞特异性基因表达相关,并不起决定性的作用。
图2 Hi-C数据显示每条染色体两种类型的compartments
A:Hi-C原始互作矩阵;B:相关系数矩阵。根据本课题组对猪第18号染色体的Hi-C测序结果(数据未发表)绘制。
在更高分辨率的Hi-C互作图谱中,compartment A/B还能被分成更小的subcompartments,即A1、A2和B1、B2、B3,并且每一个subcompartment都与部分特异性的组蛋白修饰模式相关联[15]。在果蝇()细胞中同样存在这5种主要的subcompartments染色质类型(2个激活性,3个抑制性)[16],表明这种相似的compartments染色质结构在后生动物中高度保守。
1.3 拓扑关联结构域
2012年5月,同时报道了美国麻省大学医学院分子遗传学家Job Dekker以及美国加州大学Ludwig癌症研究所Bing Ren教授的研究成果,他们均发现了哺乳动物细胞内染色质折叠的二级结构单元——TAD[17,18]。研究发现,将Hi-C互作图谱的分辨率提高到40 kb或更高时,高度自我相关的染色质区域在互作热图上表现为间隔的三角形,即拓扑关联结构域(TAD) (图3)。其中,Bing Ren教授及其团队研究了小鼠()的胚胎干细胞(mESCs)、大脑皮层(cortex)以及人的胚胎干细胞(hESCs)和肺成纤维细胞(IMR90)的Hi-C数据,在小鼠胚胎干细胞的Hi-C数据分析中找到了约2200个平均大小为0.88 Mb、约占基因组91%区域的TAD结构,且在这些TAD内部的互作显著高于TAD间的互作[17]。此外,非哺乳动物如果蝇[19]、斑马鱼()[20]、线虫()[21]以及酵母()[22,23]等基因组也具有这种相似的TAD结构,而在拟南芥()的Hi-C结果中并未发现类似TAD样的结构[24,25]。但最近的研究发现,水稻(L.)中同样存在非典型的TAD结构,并且平均分布在水稻的12条染色体中,表明TAD结构在植物中可能并不保守[26,27]。
图3 Hi-C测序数据中鉴定得到的拓扑结构域(TAD)
A:500 kb Hi-C互作矩阵;B:20 kb Hi-C互作矩阵。根据本课题组对猪第18号染色体的Hi-C测序结果(数据未发表)绘制。
越来越多的证据表明,TAD作为基因组折叠的功能单元,在不同的动物细胞中稳定存在[28,29]。首先,TAD在不同细胞间的位置相对稳定,并且其似乎并不与组织特异性的基因表达或组蛋白修饰相关;其次,TAD的定位也具有保守性,在人和小鼠的ES细胞中,共有的TAD边界达到50%~70%[14],并且这种保守性还体现在果蝇等昆虫上[30],表明TAD是动物基因组的固有特性。此外,研究还发现,TAD边界与复制域(replication domain)边界存在着大量的重合,说明TAD是复制时间调节的稳定单位[31]。
TAD作为基因组三维结构单元具有重要特征,其具体形成机制正在被不断揭示。研究显示,TAD边界富集着大量的标记因子,包括H3K4me3和H3K36me3组蛋白修饰位点、转录起始位点(transcription start site, TSS)、看家基因、tRNA、短散在元件(SINE)以及阻遏子CTCF和黏连蛋白复合物(cohesin complex),暗示这些因子在建立TAD的过程中存在着重要作用。在小鼠ES细胞中,分别有75%和33%的TAD边界在CTCF结合位点、看家基因位置的20 kb以内[17];而在基因表达时,CTCF能够与黏连蛋白协同合作,使得线性距离较远的增强子与基因的启动子相结合,激活转录表达,由此说明CTCF的结合和高表达水平的转录活性可能与TAD的形成有关。为了揭示CTCF和cohesin在TAD形成中的作用,Bing Ren教授团队分别对CTCF和cohesin进行了精确敲除,并结合4C(chromosome conformation capture-on-chip)、Hi-C和3D- FISH技术检测了染色质组装的变化及其对基因表达的影响[32]。研究发现,CTCF和cohesin对于TAD的形成具有不同的作用,cohesin主要参与TAD内部的染色质互作,而CTCF主要参与它们之间的空间隔离。CTCF稳定地绑定在染色质上,并且决定了cohesin的定位从而维持边界的稳定。如果没有CTCF,cohesin将不能准确定位,会形成跨越边界的非特异性互作。当cohesin被降解后,所有的loop域(同一条染色体上的两个位点之间具有CTCF和cohesin蛋白绑定的区域)都消失了,但compartment域(具有相似组蛋白修饰的间隔区域)或组蛋白标签并不会受到影响[33]。Loop域的缺失并不会导致广泛的基因异常表达,但确实会显著影响小部分基因的表达活性。Schwarzer等[34]也发现,TAD的形成依赖于cohesin,而compartment域却不受影响。在对染色质结构的进化分析中发现,CTCF和cohesin对于驱动染色质结构的改变也起着直接的作用[35]。也有部分研究发现,将CTCF或cohesin进行功能性敲除或敲低虽然能够引起局部互作的缺失和基因表达紊乱,但compartment或TAD在敲除之后仍然得以保留[36,37]。Barutcu等[38]也发现,敲除或者插入(X染色体中存在15个CTCF位点的保守区域)序列片段都不足以以特定性别或等位基因的方式改变活性X染色体中的TAD边界。这可能是由于在这些实验中对CTCF或cohesin的敲除并不完全或所用细胞类型的差异所致,或者是除了CTCF/cohesin结合外,可能还存在着其他的机制调控TAD的形成。
最近对果蝇的研究发现,TAD并不是由CTCF和cohesin所定义。通过超高深度Hi-C技术方法,研究人员发现果蝇基因组中TAD的实际数目是现有注释的10倍,而且整个基因组全部为TAD所覆盖,并且果蝇染色质中绝大多数的TAD边界都是由特异性的绝缘子蛋白复合物BEAF-32/CP190或BEAF-32/ Chromator所定义,而不是与人同源的CTCF/cohesin[39]。现有证据表明,BEAF-32是果蝇中特异性结合DNA的绝缘蛋白之一,而CP190/Chromator恰好可与BEAF-32结合并介导远距离相互作用,类似于哺乳动物细胞中的cohesin。这些结果表明,虽然CTCF/cohesin在果蝇中并不参与TAD的形成,但是,与其功能相似但不同源的蛋白复合物起到了哺乳动物细胞中CTCF/cohesin相同的作用。此外,除了CTCF和cohesin,DNA超螺旋在TAD的形成可能也发挥着作用[40],而超螺旋结构域的边界在位置上与TAD边界确实有着部分的重叠区域[41],但这种因素是否真正影响了TAD结构的形成,则需要进一步的实验验证。
TAD是基因组的基本特性,其结构的完整性是基因调控所必须的。删除TAD的边界片段会使基因调控陷入混乱,原本沉默的基因开始表达,而原本表达的基因被沉默。研究发现,在癌症病人中,TAD边界区域往往与大量的超级增强子的位点相重合,说明其稳定性与癌症的发生密切相关[42]。2015年,首次报道了TAD与遗传学疾病的关联[43]。德国马克斯普朗克分子遗传学研究所和柏林夏洛蒂医科大学的科学家运用最新的基因组编辑技术CRISPR/ Cas成功将调控3种人类罕见疾病(短指症、多趾畸形和并趾)的基因所在的TAD边界破坏,使得小鼠模型产生相应遗传疾病表型。在小鼠的肢体组织和患者的成纤维细胞中,与疾病有关的染色质结构改变使启动子和非编码DNA出现异常互作。在野生型小鼠中,基因的增强子正常激活其自身表达,而在3种患病的小鼠模型中,由于DNA结构变异,的增强子分别错误地激活了以及基因,使其发生异位表达,从而产生短指、多趾畸形和并趾的疾病表型;进一步研究表明,只有在CTCF相关的TAD边界区域被破坏时, 才会出现这种问题。该研究证实了TAD结构的破坏会导致远距离调控元件的重排,使得增强子会作用于错误的靶基因而引起异位表达,导致致病表型。这项研究证明了TAD功能的重要性,人们可以在此基础上预测人类结构变异的致病性,尤其是在基因组的非编码区域。该研究对基因组变化引起疾病的机制提出了新的见解。
1.4 染色质环
在哺乳动物细胞核内,由于染色质浓缩聚合的性质,导致基因纤维上两个远端位点会产生随机碰撞而以较低的频率相互作用。然而,在某些确定的基因位点间,这种远距离互作的频率却显著高于预测值。在sub-Mb分辨率的Hi-C互作图谱中,这些远距离互作的位点大量存在,它们构成了染色质稳定结构的基础,或直接参与转录等调控过程。因此,由基因位点的远距离互作而介导染色质纤维折叠形成的环状结构,称之为“Chromatin loop”,即染色质环。2014年,美国Broad研究院Aiden教授团队通过超高分辨率的原位Hi-C方法(Hi-C, 1 kb),详细地展示了长达2米的人类基因组在直径约10微米的细胞核内的全部折叠方式[15],获得了人的类淋巴母细胞(GM12878)49亿个染色质互作信息,并首次列出了整个人类基因组上形成的9448个染色质环(loop)。研究发现,这些loop的两端通常连接着已知基因的启动子和增强子,并且这些loop相关的启动子所在基因具有更高的表达水平和更强的细胞特异性。因此,这些loop确实是启动子-增强子的长距离互作所形成,并直接调控基因的表达。随着技术的发展,越来越多的超高分辨率的Hi-C结果都先后揭示出不同细胞间由于长距离互作而形成的loop结构[44~47]。尽管这些研究对于鉴定不同细胞的长距离互作的算法各有差异,但是都发现了一些loop互作共有的规律特征。首先,这些长距离互作通常发生在同一个TAD或者sub-TAD内部,排除一些特异性的基因区域(如基因)外,基因组中发生极长距离的互作相对较少[48];其次,活性的启动子、增强子以及CTCF结合位点通常与长距离互作密切相关[46,49]。此外,除启动子-增强子互作形成的loop结构外,启动子-启动子以及增强子-增强子的互作也能形成复杂的loop网络结构[49,50]。
研究发现,38%的 loop与contact domain具有一致性,即形成loop的锚点通常位于domain的边界区域,65%的loop的出现通常伴随着domain的出现,因此这些domain被称为loop domain。并且,这些临近的loop通常具有传递性(transitivity),即形成相邻两个loop的互作位点L1-L2和L2-L3,往往在L1-L3之间也会有loop的产生,说明这3个位点具有同一个空间位置。进一步研究loop形成机制时发现,大部分的loop (peak)所涉及的两个peak loci具有显著的绝缘蛋白CTCF (86%)和cohesin的两个亚基—RAD21 (86%)和SMC3 (87%)的富集,说明CTCF和cohesin参与loop结构的形成[15]。随后,Aiden教授团队对CTCF和cohesin参与loop结构形成的机制进行研究,并提出了CTCF/cohesin介导的环挤压模型(Loop Extrusion Model)[51]。在这个模型中(图4),cohesin环在NIPBL装载蛋白作用下形成cohesin复合物并结合到染色质上,延DNA序列向相反的方向滑动,挤压染色质形成loop环,直到遇到绑定在CTCF motif序列的阻遏子CTCF蛋白,挤压过程即被终止[51~53]。在环挤压过程中,染色体结构维持(stuctural maintenance of chromosomes, SMC)蛋白家族中的SMC1、SMC3以及RAD21参与形成cohesin的亚基结构[54]。此外,部分cohesin环能够在WAPL和PDS5蛋白作用下从挤压过程中释放[54]。研究还发现,由CTCF和cohesin介导形成的loop结构在不同的细胞间具有稳定的保守性,并以此划分TAD以及sub-TAD[15,55,56]。此外,这些CTCF结合位点都具有收敛的CTCF模体序列,因而能够解释在所有的CTCF结合位点中只有一小部分参与domain边界的界定[15,47,57]。
2 Hi-C技术在三维基因组学中的应用
随着Hi-C技术的不断发展,Single cell Hi-C、Hi-C、Dnase Hi-C等一系列衍生技术相继出现[22,58~61]。这些技术不仅能够用来揭示哺乳动物细胞核内染色质空间构象方式,阐明其折叠规律及其作用机制,在三维基因组学应用方面也发挥着重要作用。因此,Hi-C及其衍生技术能够用来辅助组装基因组,构建哺乳动物全基因组单倍型,比较不同细胞/物种间染色质互作的差异及其介导的基因表达差异,探究机体发育规律以及复杂疾病的发病机制等。
图4 CTCF/cohesin介导的环挤压模型
2.1 辅助基因组组装
Hi-C技术用于辅助基因组组装是目前提高基因组组装质量的一种必要手段,具体是指在已经完成基本组装的基因组草图(Draft genome)序列(Scaffolds/ Contigs)和染色体数目已知的前提下,利用Hi-C测序数据将Draft genome序列进行不同染色体的群组划分,并确定各序列在染色体上的顺序和方向,使基因组组装水平提升到染色体水平。其主要原理是染色体内互作强度高于染色体间的互作,同一染色体上近距离互作强于远距离互作[62]。Hi-C辅助基因组组装主要分为3步:(1) Cluster:将contigs或scaffolds聚类到不同的染色体组;(2) Order:在每个染色体组中按顺序排列contigs或scaffolds;(3) Orient:为每一个排好顺序的相邻的contigs或scaffolds确定方向。自2013年Burton等[62]首次利用Hi-C技术辅助组装了人、小鼠及果蝇的基因组后,近年来,研究者相继对拟南芥[63]、山羊()[64]、藜麦()[65]、埃及伊蚊()[66]、大麦(L)[67]以及甘蔗(L)[68]等动植物的基因组进行Hi-C辅助组装,为进行更深入的基因组学研究奠定了基础。
2.2 构建全基因组单倍型
单倍型是存在于染色单体内具有统计学关联性的一类单核苷酸多态性(single nucleotide polymorphisms, SNPs),这些进行共同遗传的多个基因座上等位基因的组合信息对人类遗传、疾病风险预测以及农业动植物经济性状连锁标记等方面研究具有重要价值[69]。相比于传统的单倍型分析技术对于DNA片段分析长度的限制,Hi-C技术能够使其在全基因范围内进行单倍型组装,且检测效率以及分析的准确性都较高。早2013年,Bing Ren教授团队首次利用Hi-C技术对人细胞进行了全基因组单倍型组装,构建了准确率达98%的人的单倍型群体[70]。此后,越来越多的研究报道了Hi-C技术用于构建基因组单倍型[14,71,72]。另外,研究者还开发了直接针对Hi-C测序数据的单倍型分析工具HapCUT2[73]。这些研究结果都说明Hi-C技术具有革命性的优势,能够广泛用于哺乳动物群体的单倍型构建。
2.3 基因的表达调控
Hi-C技术除了可以进行辅助组装基因组分析外,还可对基因的表达调控以及基因功能进行研究。染色质互作的形成和功能对于细胞的命运决定和分化等过程至关重要,在基因特异性表达调控中发挥重要作用。之前的研究表明,染色质环(chromatin loop)的两端通常连接着基因的启动子和增强子,线性距离较远的增强子能够通过loop结构被募集到已知基因的启动子区域,从而激活基因的转录。Mifsud等[74]通过高分辨捕获Hi-C (Capture Hi-C, CHi-C)技术,构建了两种人类血细胞(GM12878和CD34+)中超过22 000个长距离的启动子互作图谱,鉴定了超过11 600 000个两种细胞类型共有的互作,它们跨越启动子和远端位点之间的数百个碱基;研究还发现,与疾病相关的SNPs位点明显富集在基因的互作区域,暗示着远距离突变可能会破坏相关基因的表达调控而导致疾病的发生。Rubin等[75]利用CHi-C联合ChIP-seq技术,在全基因组范围内研究了分离培养的人原代角质细胞分化过程中增强子和启动子的互作模式,确认了两种类型的启动子-增强子互作:获得型(gained)互作,在分化过程中增强,并与enhancer获得H3K27ac活化标记一致;稳定型(stable)互作,在未分化细胞中已预先建立,enhancer有H3K27ac的标记,并与黏连蛋白cohesin相关。但这两种互作均未在多能性细胞中检测到,表明这种谱系特异的染色质构象在组织的前体细胞中形成,并且在终末分化中重塑。Bonev等[76]对小鼠神经细胞分化过程中的染色质结构进行了超高分辨率的解析,发现基因的转录活动与染色质的绝缘以及远距离互作相关,但dCas9介导的激活不足以重新形成TAD边界;此外,在所有的细胞类型中,长距离互作主要发生在外显子富集的gene body与激活基因间,且在神经细胞分化过程中,活性TADs之间的互作变得不明显,而非活动TADs之间的互作则越来越强,说明由分化引起的基因转录激活使得TADs的构象发生变化。X染色体失活(X-chromosome inactivation, XCI)会引起X染色体结构重塑,转变成沉默的异染色质[77]。在雌性哺乳动物发育中,X染色体失活由两条X染色体中一条的非编码RNA发生上调引起[78~80]。Giorgetti等[81]利用Hi-C技术解析了小鼠失活X染色体的结构特征以及基因表达情况:在小鼠神经前体细胞(NPCs)和胚胎干细胞中,失活的X染色体结构重塑中和含有边界发挥着重要作用,并且在失活的X染色体中,除了“逃脱”沉默的基因附近,其他位置失去了有活性和失活的compartment A/B以及TADs。
2.4 机体与细胞发育
2015年,Battulin等[82]对小鼠精细胞和胚胎成纤维细胞进行Hi-C结果的比较,在1 Mb分辨率下,精细胞的compartment A/B与胚胎成纤维细胞具有高度相似性,这与之前报道的小鼠胚胎干细胞的三维基因组结构相一致[17]。而当研究人员将分辨率提高到40 kb时,彼此之间的TAD边界出现差异,且在特定的基因座位点上,两种细胞染色质的互作差异显著。与成纤维细胞相比,精子细胞的间期细胞核小10倍左右,其基因组高度浓缩的包装形式导致了精子细胞染色质远距离互作的富集,由此说明配子细胞的染色质构象与体细胞存在差异。目前的研究认为,染色质不同层级的构象(如compartment A/B和TAD)在体细胞中是稳定存在的保守结构单元,但这种构象是与生俱来还是从配子转变为合子的早期胚胎发育时期形成的,值得人们关注。之前由于细胞数量和实验手段的限制,染色体三维结构在哺乳动物早期胚胎发育过程中的动态变化鲜为人知。近年来,随着单细胞Hi-C (single-cell Hi-C)技术的运用,研究者不仅能从普通Hi-C大量群体细胞中获得平均数据评估染色质折叠和潜在的互作,还能利用单细胞Hi-C技术分辨单个染色体的构象模型,精确调控细胞的状态和功能[58,83]。2017年,和“背靠背”发表研究论文,研究者们都发现哺乳动物染色体三维结构在着床前胚胎发育过程中的动态重组过程[84,85]。研究结果显示,精子保留经典的染色质高级结构,包括TADs和compartments;相反,处于MⅡ期的卵子染色体呈现出一种均一性结构,缺乏TADs和compartments结构。染色体三维结构在受精后首先呈现出一种极其松散的状态,两套亲本基因组在空间上部分分离且染色体compartments不同,差异持续到8细胞期。在随后的胚胎早期发育过程中,染色质高级结构逐步以亲本特异的方式建立和成熟,并且不完全依赖于合子基因组的转录激活。Flyamer等[86]也发现,受精完成后,父源和母源染色质需要在受精卵中进行空间排布重组,并且此过程中父源和母源染色质的重组方式不同。此外,Kaaij等[87]研究发现,在斑马鱼的早期胚胎发育过程中,因为缺乏合子的转录活动,其基因组高度结构化;当合子基因组被激活后,斑马鱼染色体失去结构特征,并且这些特征在随后的发育过程中被重新建立。
染色质重塑是调控基因时序性表达的重要环节,往往发生在衰老细胞中,并且衰老细胞核中会形成衰老相关异染色质聚集(senescence-associated heterochromatic foci, SAHF)。Chandra等[88]利用Hi-C技术对衰老细胞和正常ES细胞的染色质空间构象进行探究,发现与正常细胞相比,在衰老细胞的异染色质中存在大量依赖于序列和核纤层蛋白的局部互作缺失,且衰老细胞中出现特有的异染色质聚集,这可能是SAHF形成的中间产物。此外,另一项研究也发现,当衰老发生时,染色质重塑是由于CTCF簇的形成,导致loop的重组,并且HMGB2蛋白参与此过程[89]。
2.5 在疾病研究中的应用
许多复杂疾病的发生往往与其组织细胞的三维基因组构象改变密切相关。Won等[90]通过Hi-C技术构建了人大脑皮质的高分辨率3D图谱,分析鉴定了数百个在人类谱系中已知的启动子-增强子互作基因,并且将染色质互作与GWAS研究中确定的精神分裂症相关非编码变异相结合,突出了多个候选精神分裂症风险基因和相关通路,其中一个远端的精神分裂症变异位点能够调控风险基因的表达,支持其作为精神分裂症易感基因的潜在作用。心力衰竭主要是由心肌细胞的生物化学变化引起,已有研究表明这一复杂的细胞功能障碍是基因表达改变的结果,受转录因子和染色质重塑酶的影响[91~94]。Rosa-Garrido等[95]利用5 kb分辨率的全基因组捕获Hi-C与DNA测序结合,对心脏特异性敲除CTCF的小鼠心肌细胞进行了研究,发现CTCF元件缺失和心肌压力超负荷能大幅减少loop结构,重塑loop内部互作,导致功能元件与启动子区域的互作明显减弱,从而扰乱基因的转录调控。Anene Nzelu等[96]也发现,患病小鼠与正常小鼠心室肌细胞的染色质构象单元compartments A/B的变化与基因的表达变化模式相关,通过对H3K27ac标记的富集区域进行分析,确定了细胞特异性基因表达的调控元件,并通过CRISPR敲除和基因座上游的一个调控区域,导致与其互作基因的表达下调。Loviglio等[97]通过Hi-C、FISH以及4C-seq技术确认了染色体16p11.2上两个拷贝数变异(copy number variants,CNV)倾向的区域:16p11.2远端BP2-BP3间220 kb区域和16p11.2近端BP4-BP5间600 kb区域影响染色质的成环作用,并影响成环区域间所含基因的协调表达和调控,提示染色质互作异常与孤独症谱系障碍(autism spectrum disorders)、肥胖/体重不足及巨头/小头畸形的表型相关,并且确认了在基因组其他区域类似表型相关的顺式及反式染色体互作,表明染色体互作图谱可以揭示功能和临床诊断相关的疾病易感基因。此外,也有研究报道利用Hi-C技术对类风湿关节炎、Crohn氏病等自身免疫疾病的发病机制进行探究,发现启动子互作区域的异常与这些疾病的调控机制密切相关[44]。
与正常细胞相比,癌细胞由于遗传以及表观遗传的改变,使得基因表达紊乱[98~101];并且癌症是一种以细胞核的主要形态变化为特征的疾病[102,103]。因此,染色质空间构象的变化与癌症的发生密切相关(图5)。Barutcu等[104]通过Hi-C技术对乳腺上皮细胞(MCF-10A)和乳腺癌细胞系(MCF-7)进行分析,发现与MCF-10A细胞相比,MCF-7细胞中小而基因富集的16~22号染色体间的互作频率更低,且两种细胞的染色体内部互作也区别明显;此外,MCF-10A细胞在端粒区以及亚端粒区的互作要强于MCF-7细胞。Taberlay等[105]利用Hi-C技术对前列腺癌中包括拷贝数变异、远距离染色质互作重塑以及非典型基因表达的染色体三维结构破坏进行了研究,发现癌细胞保留了将其基因组分割成Mb级别的TAD的能力,但由于附加的TAD边界的建立,这些TAD比正常细胞中的TAD小,且很大一部分新的与癌症相关的特异性TAD边界发生在CNV变化的区域。此外,前列腺癌患者17p13.1的一个常见缺失导致了单个TAD分为两个明显更小的TAD,而TAD的改变伴随着TAD内新的肿瘤特异性染色质互作的形成,并在启动子、增强子以及绝缘子等调控元件上富集,引发基因表达的改变。此外,研究者还利用Hi-C技术探究了神经母细胞瘤[106]、胶质瘤[107]以及急性T淋巴细胞白血病[108]等恶性肿瘤的发病机制,旨在从三维基因组角度解析染色体空间构象重组对于癌症发生的重要作用。
图5 癌症中染色质三维结构的破坏导致基因异常表达
癌症的发生往往伴随着基因组变异。癌症基因组的测序提供的第一个直接信息是体细胞基因组变异率如何在正常细胞与癌细胞之间变化[109~115]。研究发现,癌症基因组中的突变率与染色质折叠密切相关,在Mb尺度下,异染色质相关的组蛋白修饰标志物H3K9me3的单一特征水平可占到变异率的40%以上[116]。Litchfield等[117]联合利用Hi-C与GWAS对睾丸生殖细胞肿瘤(testicular germ cell tumors, TGCTs)中的SNPs进行鉴定,确认了19个新的风险位点,并结合之前已发现的25个位点[118,119],将总共44个风险位点与候选的致病基因进行互作网络分析,发现TGCTs的易感基础是发育调控因子的大范围紊乱导致的。Romanel等[120]利用Hi-C技术对引起前列腺癌的早发性体细胞变异的非编码多态性调节元件7p14.3与其调控基因的结构进行了分析,表明7p14.3位点的多态性可能通过雄性激素依赖的DNA损失修复功能影响前列腺癌的致病倾向。此外,还有研究利用捕获Hi-C技术对乳腺癌[121,122]、结直肠癌[123]等癌症的风险位点进行了鉴定,揭示出基因座中的重要远距离染色质互作参与癌症发生的致病机制。
Hi-C技术还能通过检测癌症病人原发性肿瘤样本组织中平衡和非平衡的染色质重塑,包括易位和反转,以及获得性CNV,预测癌症的发生及预后,这将极大降低癌症的检测成本[124]。此外,Hi-C技术还用于鉴定经福尔马林固定的石蜡包埋肿瘤样本的结构变异,这种与Hi-C技术类似的高通量构象捕获技术被称为“Fix-C”技术,能够识别未被其他方法检测到的新结构变异,这种方法能够在癌症进展期间从FFPE样本中详细解析全基因组重塑事件,为患者护理的目标分子诊断提供信息[125]。
越来越多的研究表明,染色体的三维空间构象紊乱正在成为癌症等疾病发生过程中一种新的致病机制,以Hi-C技术为代表的三维基因组技术将极大地促进复杂疾病以及癌症的相关研究,通过解析病发细胞中基因与其调控元件之间互作的改变,找到新的致病位点,并为开发新的靶向治疗药物提供线索。
3 结语与展望
随着时代的进步以及技术的革新,基因组学的发展取得了长足的进步,从“人类基因组计划”(HGP)[126]到“人类基因组百科全书计划”(ENCODE)[127]的顺利完成,科研人员可以深入分析、解读和注释基因组序列信息和功能。但是,基因组DNA并不是在染色体上呈线性排列,其三维空间构象对DNA复制、基因转录调控、染色质浓缩和分离等基本生物学过程都有着不可或缺的重要作用。Hi-C技术的提出以及其大规模的运用,使得人们可以从空间层面去揭示这些不同调控元件的互作关系,认识染色质构象对基因表达调控的机制及作用。2015年,科学家开始正式实施一个全新的全球合作项目——“4D核体计划”[128],计划用5年或者更长的时间从空间(三维)和时间(四维)角度来研究细胞核结构形成原理,探索细胞核结构对基因表达、细胞功能,以及对发育和疾病发生、发展的影响。因此,Hi-C技术以及三维基因组的全面发展,必然会为全面解读人类基因组信息、攻克复杂疾病和促进人类医学进步提供有力的支持。
[1] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome., 2009, 326(5950): 289–293.
[2] Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication., 2016, 164(6): 1110–1121.
[3] Tanay A, Cavalli G. Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization., 2013, 23(2): 197–203.
[4] Gibcus JH, Dekker J. The hierarchy of the 3D genome., 2013, 49(5): 773–782.
[5] Fraser J, Williamson I, Bickmore WA, Dostie J. An overview of genome organization and how we got there: from FISH to Hi-C., 2015, 79(3): 347–372.
[6] Boveri T. Die blastomerenkerne von ascaris megalocephala und die theorie der chromosomenindividualität., 1909, 3: 181.
[7] Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy., 1999, 77(5): 2871–2886.
[8] Branco MR, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations., 2006, 4(5): e138.
[9] Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells., 2001, 2(4): 292–301.
[10] Rosa A, Everaers R. Structure and dynamics of interphase chromosomes., 2008, 4(8): e1000153.
[11] Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T. Multicolor 3D fluorescencehybridization for imaging interphase chromosomes., 2008, 463: 205–239.
[12] Takizawa T, Meaburn KJ, Misteli T. The meaning of gene positioning., 2008, 135(1): 9–13.
[13] Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution., 2009, 137(2): 356–368.
[14] Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz- Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B. Chromatin architecture reorganization during stem cell differentiation., 2015, 518(7539): 331–336.
[15] Rao SS, Huntley MiH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer Arina D, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping., 2014, 159(7): 1665–1680.
[16] Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B. Systematic protein location mapping reveals five principal chromatin types incells., 2010, 143(2): 212–224.
[17] Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions., 2012, 485(7398): 376–380.
[18] Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the X-inactivation centre., 2012, 485(7398): 381– 385.
[19] Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and functional organization principles of thegenome., 2012, 148(3): 458–472.
[20] Gómez-Marín C, Tena JJ, Acemel RD, López-Mayorga M, Naranjo S, de la Calle-Mustienes E, Maeso I, Beccari L, Aneas I, Vielmas E, Bovolenta P, Nobrega MA, Carvajal J, Gómez-Skarmeta JL. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders., 2015, 112(24): 7542–7547.
[21] Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ. Condensin- driven remodelling of X chromosome topology during dosage compensation., 2015, 523(7559): 240– 244.
[22] Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome folding in Yeast by Micro-C., 2015, 162(1): 108– 119.
[23] Mizuguchi T, Barrowman J, Grewal SIS. Chromosome domain architecture and dynamic organization of the fission yeast genome., 2015, 589(20, Part A): 2975–2986.
[24] Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D. Genome-wide analysis of local chromatin packing inthaliana., 2015, 25(2): 246–256.
[25] Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in., 2014, 55(5): 694–707.
[26] Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B, Zhang Z, Li C, Bian Y, Zhang A, Wu Y, Liu B, Gong L. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice., 2018, 94(6): 1141–1156.
[27] Dong P, Tu X, Chu PY, Lü P, Zhu N, Grierson D, Du B, Li P, Zhong S. 3D chromatin architecture of large plant genomes determined by local A/B compartments., 2017, 10(12): 1497–1509.
[28] Dekker J, Heard E. Structural and functional diversity of topologically associating domains., 2015, 589(20PartA): 2877–2884.
[29] Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome organization., 2016, 62(5): 668–680.
[30] Szabo Q, Jost D, Chang J-M, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in drosophila., 2018, 4(2): eaar8082.
[31] Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gülsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM. Topologically associating domains are stable units of replication-timing regulation., 2014, 515(7527): 402–405.
[32] Zuin J, Dixon JR, van der Reijden MIJA, Ye Z, Kolovos P, Brouwer RWW, van de Corput MPC, van de Werken HJG, Knoch TA, van IJcken WFJ, Grosveld FG, Ren B, Wendt KS. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells., 2014, 111(3): 996–1001.
[33] Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon K-R, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL. Cohesin loss eliminates all loop domains., 2017, 171(2): 305–320.e324.
[34] Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, H. Haering C, Mirny L, Spitz F. Two independent modes of chromatin organization revealed by cohesin removal., 2017, 551(7678): 51–56.
[35] Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture., 2015, 10(8): 1297–1309.
[36] Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E, Lenhard B, Giorgetti L, Heard E, Fisher AG, Flicek P, Dekker J, Merkenschlager M. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments., 2013, 23(12): 2066–2077.
[37] Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H, Pollard SM, Schroth GP, Tanay A, Hadjur S. Cohesin-mediated interactions organize chromosomal domain architecture., 2013, 32(24): 3119–3129.
[38] Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus., 2018, 9(1): 1444.
[39] Wang Q, Sun Q, Czajkowsky DM, Shao Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells., 2018, 9(1): 188.
[40] Benedetti F, Dorier J, Burnier Y, Stasiak A. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes., 2013, 42(5): 2848–2855.
[41] Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockroft SL, Bradley M, Ylstra B, Gilbert N. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures., 2013, 20(3): 387–395.
[42] Gong Y, Lazaris C, Sakellaropoulos T, Lozano A, Kambadur P, Ntziachristos P, Aifantis I, Tsirigos A. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries., 2018, 9(1): 542.
[43] Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions., 2015, 161(5): 1012–1025.
[44] Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, Burden F, Farrow S, Cutler AJ, Rehnström K, Downes K, Grassi L, Kostadima M, Freire-Pritchett P, Wang F, BLUEPRINT Consortium, Stunnenberg HG, Todd JA, Zerbino DR, Stegle O, Ouwehand WH, Frontini M, Wallace C, Spivakov M, Fraser P. Lineage- specific genome architecture links enhancers and non-coding disease variants to target gene promoters., 2016, 167(5): 1369–1384.e19.
[45] Krijger PHL, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming., 2016, 18(5): 597–610.
[46] Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells., 2013, 503(7475): 290–294.
[47] Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan X, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li G, Ruan Y. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription., 2015, 163(7): 1611–1627.
[48] Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L, Richmond T, Spivakov M, Burgess D, Stunnenberg HG. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency., 2015, 17(6): 748–757.
[49] Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters., 2012, 489(7414): 109–113.
[50] Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R, Ngan CY, Lim J, Tai E, Poh HM, Wong E, Mulawadi FH, Sung WK, Nicolis S, Ahituv N, Ruan Y, Wei CL. Chromatin connectivity maps reveal dynamic promoter- enhancer long-range associations., 2013, 504 (7479): 306–310.
[51] Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes., 2015, 112(47): E6456–6465.
[52] Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by loop extrusion., 2016, 15(9): 2038–2049.
[53] Nichols MH, Corces VG. A CTCF code for 3D genome architecture., 2015, 162(4): 703–705.
[54] Gligoris T, Löwe J. Structural insights into ring formation of cohesin and related Smc complexes., 2016, 26(9): 680–693.
[55] Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K, Young RA. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes., 2014, 159(2): 374–387.
[56] Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI, Misteli T, Jaenisch R, Young RA. 3D chromosome regulatory landscape of human pluripotent cells., 2016, 18(2): 262–275.
[57] Zhai YN, Xu Q, Guo Y, Wu Q. Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region., 2016, 38(4): 323– 336.翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析. 遗传, 2016, 38(4): 323–336.
[58] Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure., 2013, 502(7469): 59–64.
[59] Ramani V, Cusanovich DA, Hause RJ, Ma W, Qiu R, Deng X, Blau CA, Disteche CM, Noble WS, Shendure J, Duan Z. Mapping 3D genome architecture through in situ DNase Hi-C., 2016, 11(11): 2104–2121.
[60] Belaghzal H, Dekker J, Gibcus JH. Hi-C 2.0: an optimized Hi-C procedure for high-resolution genome- wide mapping of chromosome conformation., 2017, 123: 56–65.
[61] Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling., 2011, 30(1): 90–98.
[62] Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions., 2013, 31(12): 1119–1125.
[63] Xie T, Zheng JF, Liu S, Peng C, Zhou YM, Yang QY, Zhang HY. De novo plant genome assembly based on chromatin interactions: a case study ofthaliana., 2014, 8(3): 489–492.
[64] Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I, Sullivan ST, Burton JN, Huson HJ, Nystrom JC, Kelley CM, Hutchison JL, Zhou Y, Sun J, Crisà A, Ponce de León FA, Schwartz JC, Hammond JA, Waldbieser GC, Schroeder SG, Liu GE, Dunham MJ, Shendure J, Sonstegard TS, Phillippy AM, van Tassell CP, Smith TPL. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome., 2017, 49(4): 643–650.
[65] Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M. The genome of chenopodium quinoa., 2017, 542(7641): 307–312.
[66] Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL. De novo assembly of the aedes aegypti genome using Hi-C yields chromosome-length scaffolds., 2017, 356(6333): 92–95.
[67] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome., 2017, 544(7651): 427–433.
[68] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai CM, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson DR, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen JK, Wang L, Yu L, Xin Y, Ge L, Arro J, Han JO, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana SR, Huss SE, Yang X, Sharma A, Trujillo JH, Martinez MC, Hudson M, Riascos JJ, Schuler M, Chen LQ, Braun DM, Li L, Yu Q, Wang J, Wang K, Schatz MC, Heckerman D, van Sluys MA, Souza GM, Moore PH, Sankoff D, VanBuren R, Paterson AH, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L., 2018, 50(11): 1565–1573.
[69] Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes., 2005, 56: 303–320.
[70] Selvaraj S, R Dixon J, Bansal V, Ren B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing., 2013, 31(12): 1111–1118.
[71] Korbel JO, Lee C. Genome assembly and haplotyping with Hi-C., 2013, 31(12): 1099–1101.
[72] Ben-Elazar S, Chor B, Yakhini Z. Extending partial haplotypes to full genome haplotypes using chromosome conformation capture data., 2016, 32(17): i559–i566.
[73] Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies., 2017, 27(5): 801–812.
[74] Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C., 2015, 47(6): 598–606.
[75] Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez- Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M, Wingett SW, Shi M, Zhao Z, Greenleaf WJ, Kundaje A, Snyder M, Chang HY, Fraser P, Khavari PA. Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation., 2017, 49(10): 1522–1528.
[76] Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot J-P, Tanay A, Cavalli G. Multiscale 3D genome rewiring during mouse neural development., 2017, 171(3): 557–572.e524.
[77] Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation., 2010, 166(3): 782.
[78] Sheardown SA, Duthie SM, Johnston CM, Newall AET, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N. Stabilization of Xist RNA mediates initiation of X chromosome inactivation., 1997, 91(1): 99–107.
[79] Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA., 2002, 30(2): 167– 174.
[80] Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY. Systematic discovery of Xist RNA binding proteins., 2015, 161(2): 404–416.
[81] Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, Chen CJ, Kaplan N, Chang HY, Heard E, Dekker J. Structural organization of the inactive X chromosome in the mouse., 2016, 535(7613): 575–579.
[82] Battulin N, Fishman VS, Mazur AM, Pomaznoy M, Khabarova AA, Afonnikov DA, Prokhortchouk EB, Serov OL. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach., 2015, 16(1): 77.
[83] Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy- Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C., 2017, 544(7648): 59–64.
[84] Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, He J, Xiang Y, Wang Q, Li Y, Ma J, Zhang X, Zhang K, Wang Y, Zhang MQ, Gao J, Dixon JR, Wang X, Zeng J, Xie W. Allelic reprogramming of 3D chromatin architecture during early mammalian development., 2017, 547(7662): 232–235.
[85] Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, Chen H, Du Z, Xie W, Xu X, Huang X, Liu J. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis., 2017, 170(2): 367–381.e320.
[86] Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition., 2017, 544(7648): 110–114.
[87] Kaaij LJT, van der Weide RH, Ketting RF, de Wit E. Systemic loss and gain of chromatin architecture throughout zebrafish development., 2018, 24(1): 1–10.e4.
[88] Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, Thuret JY, Andrews S, Fraser P, Reik W. Global reorganization of the nuclear landscape in senescent cells., 2015, 10(4): 471–483.
[89] Zirkel A, Nikolic M, Sofiadis K, Mallm JP, Brackley CA, Gothe H, Drechsel O, Becker C, Altmüller J, Josipovic N, Georgomanolis T, Brant L, Franzen J, Koker M, Gusmao EG, Costa IG, Ullrich RT, Wagner W, Roukos V, Nürnberg P, Marenduzzo D, Rippe K, Papantonis A. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types., 2018, 70(4): 730–744.e736.
[90] Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, Gandal MJ, Sutton GJ, Hormozdiari F, Lu D, Lee C, Eskin E, Voineagu I, Ernst J, Geschwind DH. Chromosome conformation elucidates regulatory relationships in developing human brain., 2016, 538(7626): 523–537.
[91] Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis., 2007, 12(3–4): 331–343.
[92] McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth., 2004, 259: 132–141.
[93] Molkentin JD, Dorn GW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy., 2001, 63: 391–426.
[94] Kim SY, Morales C, Gillette TG, Hill JA. Epigenetic regulation in heart failure., 2016, 31(3): 255–265.
[95] Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih TT, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure., 2017, 136(17): 1613–1625.
[96] Anene Nzelu CG, Lee D, Tan W, Tiang Z, Ilmaris MA, Li P, Fullwood M, Foo R. Chromatin organization in diseased and healthy mouse heart., 2017, 121(Suppl.1): A7.
[97] Loviglio MN, Leleu M, Männik K, Passeggeri M, Giannuzzi G, van der Werf I, Waszak SM, Zazhytska M, Roberts-Caldeira I, Gheldof N, Migliavacca E, Alfaiz AA, Hippolyte L, Maillard AM, 2p15 Consortium, 16p11.2 Consortium, Van Dijck A, Kooy RF, Sanlaville D, Rosenfeld JA , Shaffer LG, Andrieux J, Marshall C, Scherer SW, Shen Y, Gusella JF, Thorsteinsdottir U, Thorleifsson G, Dermitzakis ET, Deplancke B, Beckmann JS, Rougemont J, Jacquemont S, Reymond A. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes., 2017, 22(6): 836–849.
[98] Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, Wilson RK, Ally A, Balasundaram M, Butterfield YS, Carlsen R, Carter C, Chu A, Chuah E, Chun HJ, Coope RJ, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HI, Mayo M, Moore RA, Mungall AJ, Pleasance E, Robertson A, Schein JE, Shafiei A, Sipahimalani P, Slobodan JR, Stoll D, Tam A, Thiessen N, Varhol RJ, Wye N, Zeng T, Zhao Y, Birol I, Jones SJ, Marra MA, Cherniack AD, Saksena G, Onofrio RC, Pho NH, Carter SL, Schumacher SE, Tabak B, Hernandez B, Gentry J, Nguyen H, Crenshaw A, Ardlie K, Beroukhim R, Winckler W, Getz G, Gabriel SB, Meyerson M, Chin L, Park PJ, Kucherlapati R, Hoadley KA, Auman J, Fan C, Turman YJ, Shi Y, Li L, Topal MD, He X, Chao HH, Prat A, Silva GO, Iglesia MD, Zhao W, Usary J, Berg JS, Adams M, Booker J, Wu J, Gulabani A, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Mose LE, Jefferys SR, Balu S, Parker JS, Hayes D, Perou CM, Malik S, Mahurkar S, Shen H, Weisenberger DJ, Triche T Jr, Lai PH, Bootwalla MS, Maglinte DT, Berman BP, van Den Berg DJ, Baylin SB, Laird PW, Creighton CJ, Donehower LA, Getz G, Noble M, Voet D, Saksena G, Gehlenborg N, DiCara D, Zhang J, Zhang H, Wu CJ, Liu SY, Lawrence MS, Zou L, Sivachenko A, Lin P, Stojanov P, Jing R, Cho J, Sinha R, Park RW, Nazaire MD, Robinson J, Thorvaldsdottir H, Mesirov J, Park PJ, Chin L, Reynolds S, Kreisberg RB, Bernard B, Bressler R, Erkkila T, Lin J, Thorsson V, Zhang W, Shmulevich I, Ciriello G, Weinhold N, Schultz N, Gao J, Cerami E, Gross B, Jacobsen A, Sinha R, Aksoy B, Antipin Y, Reva B, Shen R, Taylor BS, Ladanyi M, Sander C, Anur P, Spellman PT, Lu Y, Liu W, Verhaak RR, Mills GB, Akbani R, Zhang N, Broom BM, Casasent TD, Wakefield C, Unruh AK, Baggerly K, Coombes K, Weinstein JN, Haussler D, Benz CC, Stuart JM, Benz SC, Zhu J, Szeto CC, Scott GK, Yau C, Paull EO, Carlin D, Wong C, Sokolov A, Thusberg J, Mooney S, Ng S, Goldstein TC, Ellrott K, Grifford M, Wilks C, Ma S, Craft B, Yan C, Hu Y, Meerzaman D, Gastier-Foster JM, Bowen J, Ramirez NC, Black AD, Pyatt RE, White P, Zmuda EJ, Frick J, Lichtenberg TM, Brookens R, George MM, Gerken MA, Harper HA, Leraas KM, Wise LJ, Tabler TR, McAllister C, Barr T, Hart-Kothari M, Tarvin K, Saller C, Sandusky G, Mitchell C, Iacocca MV, Brown J, Rabeno B, Czerwinski C, Petrelli N, Dolzhansky O, Abramov M, Voronina O, Potapova O, Marks JR, Suchorska WM, Murawa D, Kycler W, Ibbs M, Korski K, Spychała A, Murawa P, Brzeziński JJ, Perz H, Łaźniak R, Teresiak M, Tatka H, Leporowska E, Bogusz-Czerniewicz M, Malicki J, Mackiewicz A, Wiznerowicz M, Le X, Kohl B, Nguyen VT, Thorp R, Nguyen VB, Sussman H, Bui DP, Hajek R, Nguyen PH, Tran VT, Huynh QT, Khan KZ, Penny R, Mallery D, Curley E, Shelton C, Yena P, Ingle JN, Couch FJ, Lingle WL, King TA, Gonzalez-Angulo AM, Mills GB, Dyer MD, Liu S, Meng X, Patangan M, Waldman F, Stöppler H, Rathmell W, Thorne L, Huang M, Boice L, Hill A, Morrison C, Gaudioso C, Bshara W, Daily K, Egea SC, Pegram MD, Gomez-Fernandez C, Dhir R, Bhargava R, Brufsky A, Shriver CD, Hooke JA, Campbell JL, Mural RJ, Hu H, Somiari S, Larson C, Deyarmin B, Kvecher L, Kovatich AJ, Ellis MJ, King TA, Hu H, Couch FJ, Mural RJ, Stricker T, White K, Olopade O, Ingle JN, Luo C, Chen Y, Marks JR, Waldman F, Wiznerowicz M, Bose R, Chang LW, Beck AH, Gonzalez-Angulo AM, Pihl T, Jensen M, Sfeir R, Kahn A, Chu A, Kothiyal P, Wang Z, Snyder E, Pontius J, Ayala B, Backus M, Walton J, Baboud J, Berton D, Nicholls M, Srinivasan D, Raman R, Girshik S, Kigonya P, Alonso S, Sanbhadti R, Barletta S, Pot D, Sheth M, Demchok JA, Shaw KR, Yang L, Eley G, Ferguson ML, Tarnuzzer RW, Zhang J, Dillon LA, Buetow K, Fielding P, Ozenberger BA, Guyer MS, Sofia HJ, Palchik JD. Comprehensive molecular portraits of human breast tumours., 2012, 490(7418): 61–70.
[99] Stephens PJ, Tarpey PS, Davies H, van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerød A, The Oslo Breast Cancer Consortium (OSBREAC), Lee MTM, Shen CY, Tee BTK, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van ‘t Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SAJR, Salomon AV, Børresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR. The landscape of cancer genes and mutational processes in breast cancer., 2012, 486(7403): 400–404.
[100] Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types., 2013, 502(7471): 333–339.
[101] Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer., 2013, 339(6127): 1567–1570.
[102] Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells., 2004, 4(9): 677–687.
[103] Dey P. Cancer nucleus: morphology and beyond., 2010, 38(5): 382–390.
[104] Barutcu AR, Lajoie BR, McCord RP, Tye CE, Hong D, Messier TL, Browne G, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Imbalzano AN, Stein GS. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells., 2015, 16(1): 214.
[105] Taberlay PC, Achinger-Kawecka J, Lun AT, Buske FA, Sabir K, Gould CM, Zotenko E, Bert SA, Giles KA, Bauer DC, Smyth GK, Stirzaker C, O'Donoghue SI, Clark S. Three-dimensional disorganization of the cancer genome occurs coincident with long range genetic and epigenetic alterations., 2016, 26(6): 719–731.
[106] Chai P, Jia R, Jia R, Pan H, Wang S, Ni H, Wang H, Zhou C, Shi Y, Ge S, Zhang H, Fan X. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis., 2018, 46(12): 6041–6056.
[107] Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE. Insulator dysfunction and oncogene activation in IDH mutant gliomas., 2015, 529(7584): 110–114.
[108] Thandapani P, Kloetgen A, Lazaris C, Chen X, Ntziachristos P, Tsirigos A, Aifantis I. Dynamic 3d chromosomal landscapes in acute leukemia., 2018, 78(Suppl.13): 2998.
[109] Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, Cook L, Abbott R, Larson DE, Koboldt DC, Pohl C, Smith S, Hawkins A, Abbott S, Locke D, Hillier LW, Miner T, Fulton L, Magrini V, Wylie T, Glasscock J, Conyers J, Sander N, Shi X, Osborne JR, Minx P, Gordon D, Chinwalla A, Zhao Y, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson M, Baty J, Ivanovich J, Heath S, Shannon WD, Nagarajan R, Walter MJ, Link DC, Graubert TA, DiPersio JF, Wilson RK. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome., 2008, 456(7218): 66–72.
[110] Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordoñez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ. A small-cell lung cancer genome with complex signatures of tobacco exposure., 2009, 463(7278): 184–190.
[111] Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR. A comprehensive catalogue of somatic mutations from a human cancer genome., 2009, 463(7278): 191–196.
[112] Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA. The genomic complexity of primary human prostate cancer., 2011, 470(7333): 214–220.
[113] Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, Baumann T, Juan M, López-Guerra M, Colomer D, Tubío JMC, López C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernández JM, Puente DA, Freije JMP, Velasco G, Gutiérrez-Fernández A, Costa D, Carrió A, Guijarro S, Enjuanes A, Hernández L, Yagüe J, Nicolás P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjosé S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpí JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, López- Guillermo A, Estivill X, Montserrat E, López-Otín C, Campo E. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia., 2011, 475(7354): 101–105.
[114] Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C, Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita A, Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang Z. The mutation spectrum revealed by paired genome sequences from a lung cancer patient., 2010, 465(7297): 473–477.
[115] Hodgkinson A, Chen Y, Eyre-Walker A. The large-scale distribution of somatic mutations in cancer genomes., 2011, 33(1): 136–143.
[116] Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells., 2012, 488(7412): 504–507.
[117] Litchfield K, Levy M, Orlando G, Loveday C, Law PJ, Migliorini G, Holroyd A, Broderick P, Karlsson R, Haugen TB, Kristiansen W, Nsengimana J, Fenwick K, Assiotis I, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, UK Testicular Cancer Collaboration, PRACTICAL Consortium, Bishop DT, Reid A, Huddart RA, Shipley J, Grotmol T, Wiklund F, Houlston RS, Turnbull C. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor., 2017, 49(7): 1133–1140.
[118] Rapley EA, Turnbull C, Al Olama AA, Dermitzakis ET, Linger R, Huddart RA, Renwick A, Hughes D, Hines S, Seal S, Morrison J, Nsengimana J, Deloukas P, UK Testicular Cancer Collaboration, Rahman N, Bishop DT, Easton DF, Stratton MR. A genome-wide association study of testicular germ cell tumor., 2009, 41(7): 807–810.
[119] Chung CC, Kanetsky PA, Wang Z, Hildebrandt MAT, Koster R, Skotheim RI, Kratz CP, Turnbull C, Cortessis VK, Bakken AC, Bishop DT, Cook MB, Erickson RL, Fosså SD, Jacobs KB, Korde LA, Kraggerud SM, Lothe RA, Loud JT, Rahman N, Skinner EC, Thomas DC, Wu X, Yeager M, Schumacher FR, Greene MH, Schwartz SM, McGlynn KA, Chanock SJ, Nathanson KL. Meta- analysis identifies four new loci associated with testicular germ cell tumor., 2013, 45(6): 680–685.
[120] Romanel A, Garritano S, Stringa B, Blattner M, Dalfovo D, Chakravarty D, Soong D, Cotter KA, Petris G, Dhingra P, Gasperini P, Cereseto A, Elemento O, Sboner A, Khurana E, Inga A, Rubin MA, Demichelis F. Inherited determinants of early recurrent somatic mutations in prostate cancer., 2017, 8(1): 48.
[121] Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, Nagano T, Andrews S, Wingett S, Kozarewa I, Assiotis I, Fenwick K, Maguire SL, Campbell J, Natrajan R, Lambros M, Perrakis E, Ashworth A, Fraser P, Fletcher O. Unbiased analysis of potential targets of breast cancer susceptibility loci by capture Hi-C., 2014, 24(11): 1854–1868.
[122] Baxter JS, Leavy OC, Dryden NH, Maguire S, Johnson N, Fedele V, Simigdala N, Martin LA, Andrews S, Wingett SW, Assiotis I, Fenwick K, Chauhan R, Rust AG, Orr N, Dudbridge F, Haider S, Fletcher O. Capture Hi-C identifies putative target genes at 33 breast cancer risk loci., 2018, 9(1): 1028.
[123] Jäger R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, Whiffin N, Carnicer MJ, Broome L, Dryden N, Nagano T, Schoenfelder S, Enge M, Yuan Y, Taipale J, Fraser P, Fletcher O, Houlston RS. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci., 2015, 6: 6178.
[124] Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours., 2017, 18(1): 125.
[125] Troll CJ, Putnam NH, Hartley PD, Rice B, Blanchette M, Siddiqui S, Ganbat JO, Powers MP, Kunder CA, Bustamante CD, Zehnder JL, Green RE, Costa HA. Structural variation detection by proximity ligation from Formalin-Fixed, Paraffin-Embedded tumor tissue., 2018, doi: 10.1016/j.jmoldx.2018.11.003.
[126] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome., 2004, 431(7011): 931–945.
[127] ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project., 2004, 306(5696): 636–640.
[128] Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S, the 4D Nucleome Network. The 4D nucleome project., 2017, 549(7671): 219–226.
Advances in mammalian three-dimensional genome by using Hi-C technology approach
Chunyou Ning, Mengnan He, Qianzi Tang, Qing Zhu, Mingzhou Li, Diyan Li
Mammalian genomic DNA in the cell nucleus doesn’t exist in linear form but is highly folded and condensed into chromatin with a three-dimensional (3D) structure possessing a specific spatial structure and conformation. Hi-C, the high-throughput chromosome conformation capture technology, was first published in 2009, and it provides an in-depth view of 3D genomics. According to the size of DNA unit, the 3D hierarchical units of mammalian genome can be categorizedsequentially as chromosome territory (CT), chromatin compartment A/B, topological associated domain (TAD), and chromatin loop. These hierarchical structural units play vital roles in gene transcription and regulation. In this review, we summarize the 3D hierarchical division of chromosomes, the effects of hierarchical units and the applications of Hi-C technology in development and disease. This review is intended to provide insights for the further study of 3D genomics in mammals.
three dimensional (3D) genomics; chromatin spatial organization; Hi-C technology; gene transcriptional regulation
2018-11-21;
2019-01-23
国家重点研发计划项目(编号:2018YFD0500403)和国家自然科学基金项目(编号:31772576)资助[Supported by the National Key R&D Program of China (No. 2018YFD0500403) and the National Natural Science Foundation of China (No. 31772576)]
宁椿游,博士研究生,研究方向:动物遗传育种与繁殖。E-mail: ningchunyou@hotmail.com
李地艳,博士,研究员,研究方向:功能基因组学研究。E-mail: diyanli@sicau.edu.cn
10.16288/j.yczz.18-317
2019/2/28 16:39:29
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190228.1639.002.html
(责任编委: 赵方庆)