APP下载

泡沫体系改善早期聚合物驱效果实验研究

2019-03-19周凤军王欣然李金宜

油气地质与采收率 2019年2期
关键词:水驱采收率岩心

周凤军,王欣然,李金宜,江 聪,杨 明

(中海石油(中国)有限公司天津分公司渤海石油研究院,天津300459)

目前,水驱广泛地应用于油田开发,并显著地改善了油田的开发效果,但是水驱过后,油藏仍有大量的剩余油存在。气驱[1-4]、化学驱[5-7]和泡沫驱[8-9]等被认为是水驱后能较为有效地提高原油采收率的技术。聚合物驱在中国老油田已开展了工业化应用,取得了十分显著的效果,在水驱的高含水率阶段可以提高采收率10%[10]。然而,即使聚合物驱后,油藏中仍有大量的剩余油未被采出,采收率仍有进一步提高的潜力。泡沫驱是一种利用气体与起泡剂混合形成的气泡作为驱替介质的技术,泡沫驱具有选择性、封堵性[11],泡沫遇到原油会破,因此气泡仅在低含油饱和度区域建立有效阻力,进一步扩大波及体积,因此可以进一步提高采收率;然而单纯的泡沫驱的缺点也十分明显,油相的存在使得泡沫的稳定性变差[12]。研究表明,原油组分对其稳定性具有显著的影响[13],此外,盐溶液、表面活性剂的类型及气液比也影响了泡沫自身的强度,泡沫的稳定性是影响泡沫驱效果的主要因素[14],有研究指出,纳米颗粒可以增强泡沫在多孔介质中的稳定性[15-19]。目前见到少量的矿场井组试验成功的报道[20-22],并没有形成规模化应用。

研究指出,加入聚合物能够增强泡沫体系的稳定性[23],聚合物驱与泡沫驱技术组合的应用,从原理上讲是一种较为优化的手段,可以充分发挥两者的优势,因此被认为是继聚合物驱后的一项有效的进一步提高采收率的技术。聚合物驱后,聚合物波及区域含油饱和度较低,泡沫进入聚合物驱后的低含油饱和度区域,能够建立有效的阻力,后续的水驱或者聚合物驱能够进一步扩大波及体积,而吸附在岩石表面的聚合物也能够降低泡沫液的吸附,增强泡沫体系的强度和稳定性,使得泡沫体系的性能得以充分发挥。在此理念指导下,开展了注入泡沫体系改善早期聚合物驱效果的实验研究。

图1 注泡沫体系聚合物驱实验流程Fig.1 Experimental sketch of polymer flooding followed by foamflooding

1 实验器材与方法

1.1 实验器材

实验仪器主要包括:Teledyne Isco高压高精度柱塞泵、压力传感器、六通阀、手摇泵、回压阀、泡沫发生器和中间容器等组成(图1)。

实验材料包括:起泡剂溶液为十二醇和甜菜碱;聚合物体系质量浓度为1 200 mg/L;泡沫体系质量浓度为1 200 mg/L+起泡剂溶液;实验用岩心为人造岩心,高渗透率岩心和低渗透率岩心渗透率级差为4,其他物性参数见表1。

表1 实验人造岩心物性参数Table1 Physical parameters of artificial core

1.2 实验方案

水驱方案 纯水驱至采出端含水率为98%。

早期注聚合物驱方案 水驱至高渗透率岩心见水,实施聚合物驱至含水率为98%。

泡沫体系-聚合物驱方案1 水驱至高渗透率岩心见水,实施聚合物驱至含水率为85%,注入0.3 PV泡沫体系后继续聚合物驱至含水率为98%。

泡沫体系-聚合物驱方案2 水驱至高渗透率岩心见水,实施聚合物驱至含水率为85%,注入0.5 PV泡沫体系后继续聚合物驱至含水率为98%。

泡沫体系-聚合物驱方案3 水驱至高渗透率岩心见水,实施聚合物驱至含水率为98%,注入0.3 PV泡沫体系后继续聚合物驱至含水率为98%。

1.3 实验步骤

实验步骤主要包括:①将岩心烘干后称干重;抽真空饱和地层水,称湿重;确定岩心的孔隙体积,计算孔隙度。②选取合适的饱和地层水的高、低渗透率岩心放入岩心夹持器中,加1.5 MPa的围压,并置于65℃下恒温2 h以上,分别测定其水相渗透率。③以低流速(0.1 mL/min)油驱岩心至岩心出口端不出水为止,然后提高油驱速度,油驱体积达到岩心10 PV以上,计量油驱出水的体积,并计算束缚水饱和度,老化24 h(2块岩心分别进行饱和油操作)。④将岩心并联,出口端回压设定为2 MPa。以恒定速度为0.5 mL/min按实验方案进行水驱、聚合物驱及泡沫体系-聚合物驱的岩心实验(气液比为1∶1),记录驱替过程中的压力变化、累积产油量和累积产水量,并计算注入压力、高、低渗透率岩心采收率及含水率随注入量的变化。

2 实验结果与分析

2.1 不同开发方式结果对比及分析

实验中对比水驱、聚合物驱和泡沫体系聚合物驱3种开发方式(图2)。从图2a中可以看出,与水驱相比,早期聚合物驱能够大幅度提高整体采收率,采收率增幅为9.9%,而泡沫体系聚合物驱能够在聚合物驱基础上进一步提高采收率,采收率增幅为9.4%,可见泡沫体系对于改善聚合物驱具有显著效果。从图2b中可以看出,与聚合物驱相比,泡沫体系聚合物驱能大幅度降低含水率,含水率最大降幅为28%,含水率漏斗的宽度也比纯聚合物驱含水率漏斗宽,表明泡沫体系聚合物驱的有效作用时间更长。此外,在注入泡沫体系的初始阶段,含水率仍会上升近9%,其原因为低渗透率岩心中的剩余油含量较高,而泡沫体系具有遇油消泡的特点,所以开始时很难形成稳定的泡沫体系,低渗透率岩心的动用程度减弱,导致产油量减少,含水率上升;而当泡沫体系进入高渗透率岩心,并产生封堵效果,使其注入压力增加,从而使后续驱替流体更多地进入低渗透率岩心进行驱油,最终低渗透率岩心的驱替效果得以改善。从图2c中可以看出,与水驱相比,聚合物驱提高采收率的主要贡献来自低渗透率岩心产出状况的改善,低渗透率岩心提高采收率为13.7%,而高渗透率岩心提高7.9%,充分说明聚合物驱流度的控制对于层间差异的改善作用;泡沫体系聚合物驱能够进一步改善层间差异,低渗透率岩心采收率又提高13.9%。

在实施注入泡沫体系的聚合物驱过程中,观察到高渗透率岩心有轻微气窜的现象,主要是由于在含水率为85%时转注泡沫体系聚合物驱,高渗透率岩心中剩余油含量相对较高,增加了对泡沫的消泡作用,因此在一定程度上限制了泡沫体系封堵高渗透率岩心的作用。

2.2 不同注入量泡沫体系聚合物驱结果对比及分析

注泡沫体系聚合物驱条件下,分析含水率为85%时,注入0.3和0.5 PV泡沫体系的实验结果(图3)。从图3a中可以看出,随着泡沫体系注入量的不断增加,采收率将进一步提高,注入0.5 PV泡沫体系聚合物驱与注入0.3 PV泡沫体系聚合物驱相比,最终采收率提高6.9%,相比纯聚合物驱可提高16.3%。图3b为不同泡沫体系注入量的组合驱产出端含水率对比,注入0.5 PV泡沫体系聚合物驱含水率下降幅度比注入0.3 PV泡沫体系聚合物驱要低得多,且含水率漏斗的宽度更宽,表明泡沫体系聚合物驱有效作用时间越长。从图3c中可以看出,泡沫体系聚合物驱提高采收率的主要贡献来自低渗透率层产出状况的改善,注入0.5 PV泡沫体系的组合驱低渗透率层与注入0.3 PV泡沫体系的组合驱相比,采收率提高10.7%。

2.3 不同注入时机泡沫体系结果对比及分析

注泡沫体系聚合物驱条件下,分析采出端在含水率分别为85%和98%时的实验结果(图4)。从图4a中可以看出,与采出端含水率为85%时的注入泡沫体系聚合物驱相比,含水率为98%时注入泡沫体系仍能进一步提高采收率9.9%,其中低渗透率岩心的提高采收率幅度达18.4%(图4c)。从图4b中可以看出,与采出端含水率为85%时注入泡沫体系聚合物驱相比,在采出端含水率为98%时,注入泡沫体系聚合物驱,含水率漏斗越宽,表明泡沫体系聚合物驱有效作用时间越长。实验对比表明,采出端含水率水平对于泡沫体系聚合物驱的稳定性具有重要的影响,泡沫体系注入时机越晚,泡沫进入高渗透岩心后受到原油消泡作用越弱,泡沫体系越稳定且强度越大,注入泡沫体系聚合物驱建立阻力的有效时间长,因此能够进一步提高采收率。

图3 泡沫体系聚合物驱不同注入量下含水率及采收率对比Fig.3 Comparison of recovery and water cut for polymer flooding followed by different slug size foamflooding

图4 泡沫体系聚合物驱不同注入时机下含水率及采收率对比Fig.4 Comparison of recovery and water cut for polymer flooding followed by different foam injection timing

3 结论

泡沫体系对于改善聚合物驱具有显著的效果,随着泡沫体系注入量的增加,泡沫体系聚合物驱的采收率进一步提高;不同含水率阶段注入泡沫体系实验表明,含水率越高,注入泡沫体系聚合物驱效果越好。泡沫体系的稳定性和泡沫强度受含水率的影响,泡沫体系注入时机越晚,泡沫体系进入高渗透岩心后受原油消泡作用越弱,泡沫体系越稳定且强度越大,泡沫体系聚合物驱建立阻力的有效时间越长,因此能够进一步提高采收率。

猜你喜欢

水驱采收率岩心
《油气地质与采收率》征稿简则
《油气地质与采收率》征稿简则
《油气地质与采收率》第六届编委会
钻探岩心定向技术在地质剖面解译中的应用
《油气地质与采收率》征稿简则
特高含水后期油藏水驱效果评价方法
强底水礁灰岩油藏水驱采收率表征模型
Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models
水驱砂岩油藏开发指标评价新体系
低矿化度水驱技术增产机理与适用条件