强化氮气泡沫调驱技术在中孔中渗透储层适用界限的实验研究
2019-03-19赵凤兰侯吉瑞李文峰刘怀珠郝宏达付忠凤
赵凤兰 ,王 鹏 ,侯吉瑞 ,李文峰 ,刘怀珠 ,郝宏达 ,付忠凤
(1.中国石油大学(北京)提高采收率研究院,北京102249;2.中国石油三次采油重点实验室低渗油田提高采收率应用基础理论研究室,北京102249;3.北京市重点实验室温室气体封存与石油开采利用,北京102249;4.中国石油冀东油田公司钻采工艺研究院,河北唐山063004)
中国冀东油田某断块油藏中部埋深约为3 000 m,地层厚度为150~320 m;平均孔隙度为19%,平均渗透率为170 mD,属于典型中孔中渗透油藏[1-5]。该油藏具有油水关系复杂、天然能量不足等特点。在开发过程中,由于地质认识程度的不足,已开发区块层间非均质性较严重,致使油藏存在控制程度低、水驱采出程度低和含水率上升快等问题[6]。泡沫作为气液分散体系具有视黏度高、堵水不堵油等特性,且起泡剂本身为表面活性剂,能起到降低油水界面张力、乳化原油和改变岩石表面润湿性等作用[7-10]。此外,氮气来源广、价格低、物理性能较稳定[11-13],因此氮气泡沫无论是在驱替、调剖还是在钻井、压水锥等方面均取得了良好的应用效果[14-18],但是氮气泡沫调驱体系的油藏适用界限等方面的相关研究较少[19]。因此,采用岩心驱替实验,重点研究岩心非均质性和调驱时机对氮气泡沫调驱效果的影响,以期为该类储层氮气泡沫调驱方案设计提供依据。
1 实验器材与方法
1.1 实验器材
实验装置(图1)主要包括HW-II型自控恒温箱、LB-05高压恒速泵、双层岩心夹持器(使用压力为32 MPa,实验用岩心的长、宽、高分别为4.5,4.5,30 cm)、3个活塞中间容器、D07-7B质量流量控制器、D08-1G型数字流量显示仪、压力传感器及MCGS6.2通用版数据采集系统和液体计量装置等。
实验用油为冀东油田中深层原油与航空煤油(按一定比例)复配所得模拟地层油,在实验温度为85℃条件下黏度为7.4 mPa·s。
实验用水为与冀东油田中深部地层水离子质量浓度一致的模拟地层水,Na+,K+,Mg2+,CO2-,
3HCO3-和Cl-的质量浓度分别为1 611,39,39,40,166和1 624 mg/L,总矿化度为5 015 mg/L。
实验用稳泡剂为部分水解聚丙烯酰胺(HPAM),相对分子质量为1 500×104,有效物质量分数为88%。
实验用起泡剂为阴离子型起泡剂TT-2,主要成分是α-烯烃磺酸钠,质量分数为0.6%,并采用质量分数为0.3%的聚合物作为稳泡剂。该体系在实验温度为85℃、总矿化度为5 000 mg/L条件下的泡沫半衰期为40 min,起泡体积为517.5 mL,泡沫综合指数为20 700 min·mL,实验方法同赵江玉等[20-21]提出的评价泡沫性能方法一致。
实验用气为纯度为99.99%的氮气。
图1 强化氮气泡沫调驱实验装置Fig.1 Experimental schematic diagram of enhanced nitrogen foamprofile control and displacement
1.2 实验方法
在实验温度为85℃的条件下,采用模拟地层水和模拟地层油进行强化氮气泡沫调驱实验。设计8组实验,其中4组分别采用渗透率级差为2—11的层间非均质人工压制砂岩模型(长、宽、高分别为4.5,4.5,30 cm),固定高渗透层渗透率为 200~300 mD,改变低渗透层渗透率,考察不同渗透率级差(约为2,3,6,11)对强化氮气泡沫调驱效果的影响,并与均质岩心条件下的实验结果进行对比。另外2组采用相同渗透率级差(约为6)的物理模型,改变泡沫调驱时机,在采出液含水率分别为60%和80%时进行调驱,并与含水率为98%、渗透率级差为6时的实验结果进行对比,考察不同调驱时机对采出程度的影响;另有1组对照实验,用于泡沫稳定性分析。
具体实验步骤主要包括:①人工压制一定渗透率级差的2层非均质岩心,烘干,测量长、宽、高,计算视体积。②将岩心放入对应的岩心夹持器中,加围压,抽真空4 h。③饱和模拟地层水,计量孔隙体积,并计算孔隙度。④按图1连接实验装置,并水测渗透率。⑤将实验温度升至85℃,低速饱和模拟地层油,直至出口端连续出油为止(双出口端,按出油顺序依次关闭出口),计算含油(水)饱和度;并老化24 h以上。⑥以0.2 mL/min的恒定流速进行水驱,记录压力和产液(水)量。⑦以1 mL/min的恒定流速交替注入起泡剂和氮气(氮气体积按实验条件计算);每次注入0.05 PV,交替6次,累积注入0.3 PV;记录压力和产液(水)量。⑧后续水驱直至高渗透层含水率达到98%为止,记录压力和产液(水)量。⑨实验结束,通过记录的压力和产液(水)量等数据计算岩心的采出程度、含水率、分流率等数据。⑩改变渗透率级差或产出液含水率(泡沫调驱时机)进行下1组实验。
按照实验步骤①—⑤,可得到实验岩心尺寸、渗透率及其非均质性和原始含油饱和度等基础数据(表1)。从表1中可以看出,渗透率及其级差基本满足设计要求,原始初始含油饱和度约为60%。
表1 实验岩心基础数据Table1 Basic core data in the experiment
2 实验结果与分析
2.1 不同渗透率级差下强化氮气泡沫调驱效果
2.1.1 阶段采出程度
从不同渗透率级差条件下的强化氮气泡沫调驱效果(图2)可知,强化氮气泡沫对高渗透层提高采出程度的幅度基本相同,约为8.5%,总提高采出程度主要取决于低渗透层;当渗透率级差为2—6时,低渗透层提高采出程度幅度较大,均为11%,总提高采出程度在18%以上,其中渗透率级差为6时,总提高采出程度最高达20.0%,说明该渗透率级差范围内,强化氮气泡沫有效封堵了高渗透通道,使其渗流阻力增大,改变了液流方向,增大波及面积,有效动用低渗透层中的剩余油,达到提高采出程度的目的。此外,起泡剂作为一种表面活性剂,具有降低油水界面张力、乳化原油和改变岩石表面润湿性等作用,能够提高驱油效率,从而提高采收率。而当渗透率级差达11时,强化氮气泡沫的低渗透层提高采出程度仅为3.6%,表明渗透率级差过大时,强化氮气泡沫无法有效启动低渗透层中的剩余油。
图2 不同渗透率级差下强化氮气泡沫调驱效果Fig.2 Profile control and displacement effect of enhanced nitrogen foamat different permeability ratios
图3 不同渗透率级差下含水率随注入量的变化Fig.3 Relationship between water cut and injection volume at different permeability ratios
2.1.2 含水率
从不同渗透率级差下含水率随注入体积变化的关系(图3)可以看出,渗透率级差为2—6时,强化氮气泡沫注入使得含水率最低降至40%以下,其中,当渗透率级差为3时,强化氮气泡沫的堵水能力最强,含水率最低降至23.5%,且在注入量为0.3 PV时将含水率控制在80%以下;而均质岩心和渗透率级差为11时控水效果相对较差,强化氮气泡沫调驱后的含水率最低约为50%。均质岩心控水效果较差是由于前期水驱效果明显,岩心中含油饱和度相对较低;渗透率级差为11时控水效果差是由于渗透率级差太大,低渗透层无法启动,液流通道主要为高渗透层。总体来看,强化氮气泡沫的堵水效果较明显,在渗透率级差小于11时,含水率最低能控制在50%以下,且含水率为80%时的控水窗口均大于0.25 PV。
2.1.3 产液剖面改善程度
从不同渗透率级差下驱替过程中高渗透层和低渗透层分流率变化(图4)中可以看出,高渗透层分流率明显高于低渗透层,且随着渗透率级差的增加,高渗透层分流率与低渗透层分流率差距更明显;强化氮气泡沫注入和后续水驱阶段,高渗透层分流率随着渗透率级差的增大而增大,低渗透层分流率随着渗透率级差的增大而减小,特别是渗透率级差为2—6时低渗透层的分流率甚至会超过高渗透层的,且剖面改善持续的时间较长,而渗透率级差为3时,维持产液剖面平衡的注入量达0.25 PV,说明在该渗透率级差时强化氮气泡沫注入能够有效改善产液剖面,增加高渗透层的渗流阻力,使液流转向,分流率增加,提高低渗透层的波及面积。当渗透率级差为11时,强化氮气泡沫注入对高渗透层和低渗透层的分流率几乎无影响,因此没有对产液剖面起到改善作用。
综合采出程度、含水率以及产液剖面改善程度等方面分析实验结果可知,强化氮气泡沫在一定渗透率级差范围内是可以起到较好地改善产液剖面和控水增油的作用,但是当渗透率级差大于10时,强化氮气泡沫的流度控制能力不能充分发挥作用,调驱效果有限,因此建议强化氮气泡沫调驱技术在中孔中渗透储层中应用时非均质性不宜太强,渗透率级差宜在10以内。
图4 不同渗透率级差下分流率随注入量的变化Fig.4 Relationship between diversion rate and injection volume at different permeability ratios
2.2 不同调驱时机的强化氮气泡沫调驱效果分析
2.2.1 阶段采出程度
从不同含水率对应的调驱时机下的强化氮气泡沫调驱效果(表2)可以看出,在渗透率级差基本相当的条件下,含水率为80%时注入强化氮气泡沫调驱效果最好,提高采出程度和总提高采出程度分别为34.2%和55.0%;含水率为60%时注入强化氮气泡沫的采出程度次之,而当含水率为98%(经济极限含水率)时注入强化氮气泡沫,提高采出程度和总提高采出程度分别为20.0%和45.9%,比含水率为80%时低10%。这是由于随着含水率的增大,岩心内部将会逐渐形成稳定的渗流通道,且渗流通道的渗流阻力相对较小;此时注入强化氮气泡沫,无法实现有效封堵。而含水率为60%时注入强化氮气泡沫的提高采出程度低于含水率为80%时的,这是由于泡沫具有遇油消泡的特点,当主要渗流通道含有较高比例的原油时,强化氮气泡沫会快速破灭,从而使采出程度相对较低。
表2 不同调驱时机下的强化氮气泡沫调驱效果Table2 Profile control and displacement effect of enhanced nitrogen foam at different flooding times
2.2.2 入口压力
从入口压力变化及高渗透层和低渗透层产液量可以分析强化氮气泡沫的形成、运移和破灭等过程。整个驱替过程可以分为水驱阶段、强化氮气泡沫注入阶段、后续水驱阶段,3个阶段对应的压力变化规律截然不同。
水驱阶段的压力变化表现为先上升而后趋于平缓;前期上升是因为实验模型内的压力较低,需要注入一定的液量来提升入口压力;当达到驱替的平衡压力时,压力的变化幅度将会相对变得很小,从而趋于平缓。
强化氮气泡沫注入阶段的压力变化表现为前期阶段式上升和后期起伏较大。前期随着起泡剂和氮气的交替注入,入口压力会迅速上升:第1次入口压力迅速上升是因为起泡剂内含有聚合物,其视黏度远大于模拟地层油和模拟地层水的黏度,且驱替速度也由原来的0.2 mL/min提升至1.0 mL/min,注入6 mL起泡剂后入口压力从200 kPa上升至1 000 kPa;随后注入6 mL的氮气,入口压力会继续上升(中间有短暂的下降是因为交替的间隔),此时氮气和起泡剂混合将会形成强化氮气泡沫,其视黏度大于起泡剂的视黏度。第2轮交替注入起泡剂和氮气,压力会继续上升,直至达到一个较大的峰值,峰值与强化氮气泡沫的视黏度、渗流通道的含油饱和度和岩心的渗透率等有关。因为强化氮气泡沫的不稳定性较大,所以达到入口压力峰值后,入口压力的起伏较大。
后续水驱阶段的压力变化表现为先迅速下降,随后出现峰值,再平稳下降。进入后续水驱阶段,二、三阶段衔接处的入口压力迅速下降,主要由于驱替速度(由1.0变为0.2 mL/min)和驱替介质的变化(由强化氮气泡沫变为模拟地层水);随后出现入口压力峰值,同时表现出低渗透层产液量增加,甚至大于高渗透层的产液量(图5),这说明高渗透层的主要渗流通道形成了强化氮气泡沫,实现了短暂性地封堵,迫使液流转向,启动低渗透层的剩余油,也说明气、液2种介质可以在多孔介质运移过程中相互作用而形成泡沫;而后入口压力平缓下降,这是因为强化氮气泡沫逐渐破灭以及部分起泡剂和氮气从出口端产出。
图5 不同调驱时机下的入口压力及产液量随注入量的变化Fig.5 Relationship between inlet pressure,fluid production and injection volume at different flooding times
从渗透率级差为6时不同含水率下的入口压力及产液量的变化(图5)可以看出,后续水驱阶段的入口压力由大到小为:含水率为98%,80%,60%。研究结果表明,水流通道的含水率越高,其强化氮气泡沫破灭速度越慢,泡沫-模拟油体系的视黏度越大,所需要的驱替压差越大。当含水率为60%时,后续水驱阶段入口压力下降较快,也反映了强化氮气泡沫的破灭速度较快。
2.3 泡沫稳定性
为进一步说明泡沫堵水不堵油和遇油消泡的特点,进行未饱和模拟地层油(是指在整个实验过程中,略去饱和油过程(实验步骤⑤)的强化氮气泡沫注入对照实验。该对照实验是参照实验编号为4的实验时间节点来进行的。
从2组对照实验入口压力与注入倍数的关系(图6)可以看出,在交替注入阶段,2组对照实验入口压力所达到的峰值相近(第8组实验比第4组实验高178.5 kPa,约为7%);而在后续水驱阶段,第8组实验的平均入口压力明显高于第4组的平均入口压力;直到水驱至高含水率阶段,两者才接近,入口压力趋于1 100 kPa。这说明第4组实验的强化氮气泡沫在多孔介质运移过程中,其破灭速度大于未饱和模拟地层油对照组的,直到高含水率阶段,2组对照实验的含水饱和度接近,入口压力也趋于接近,即泡沫遇油后消泡,从而进一步解释了泡沫调驱时机选择的重要性。
图6 2组实验入口压力随注入量的变化Fig.6 Relationship between inlet pressure and injection volume in the two groups of control experiment
3 结论
针对中孔中渗透储层,强化氮气泡沫调驱技术在一定渗透率级差范围内具有明显的控水增油和产液剖面改善效果,但渗透率级差不宜过大,应控制在10以内。当渗透率级差为2—6时,强化氮气泡沫调驱后采出程度在水驱基础上可提高18%以上;从控水效果来看,强化氮气泡沫注入使得含水率从98%降至40%以下,且采出液含水率为80%时为最佳泡沫调驱时机,此时既未完全形成主要的渗流通道,又可保证渗流通道具有较高的含水量。