MMP-9与支气管哮喘气道重塑的相关性及其临床应用研究进展
2019-03-18叶红伟梁民勇王小莉吴秀明
叶红伟 梁民勇 王小莉 吴秀明
[摘要]在中国支气管哮喘防治指南(2016)中,支气管哮喘(哮喘)急性发作时的治疗仍以其严重程度作为重要参考,以发病时症状、体征、血气分析及肺功能等作为其严重程度评估指标,但存在一定的局限;症状、体征的评估具有很大的主观性,血气分析和肺功能检查在基层医院普及率不高,且哮喘急性发作时行肺功能检查不实际。哮喘气道重塑发生于病程早期,随病情发展而加重,可反应哮喘严重程度。基质金属蛋白酶-9(MMP-9)可作为哮喘气道重塑的生物标志物用以评估哮喘及气道重塑。
[关键词]支气管哮喘;气道重塑;基质金属蛋白酶-9;评估
[中图分类号] R562.2 [文献标识码] A [文章编号] 1674-4721(2019)1(b)-0025-04
[Abstract] The treatment of acute attack of bronchial asthma (asthma) is still based on its severity as an important reference and the severity of the disease was assessed by symptoms, signs, blood gas analysis and pulmonary function at onset in Guidelines for the prevention and treatment of bronchial asthma in China (2016). But there are certain limitations: the assessment of symptoms and signs is very subjective, and the prevalence of blood gas analysis and pulmonary function tests are not high in the primary hospital, and the pulmonary function tests are not practical in acute asthma attacks. Airway remodeling occurs early in the course of asthma and increases with the progression of the disease, which can reflect the severity of asthma. Matrix metalloproteinase-9(MMP-9) can be used as a biomarker for airway remodeling in asthma to assess asthma and airway remodeling.
[Key words] Bronchial asthma; Airway remodeling; Matrix metalloproteinase-9; Assessment
哮喘是最常见的肺部疾病之一[1],其致残率与糖尿病等慢性疾病相当[2],致死率为8/100 000,是全球致死50大原因之一[3]。2010年在我国8省市进行的相关调查显示,我国14岁以上人群哮喘患病率为1.24%,而控制率仅为发病的40.5%[4],且北京、上海、广东、辽宁的哮喘患者近10年明显增多[5]。哮喘急性發作在临床工作中仍不少见,现对基质金属蛋白酶-9(MMP-9)与支气管哮喘气道重塑的相关性及临床应用进展进行综述。
1气道重塑是哮喘的最主要特征
哮喘有可逆性气流受限、气道高反应性(airway hyperresponsiveness,AHR)、气道重塑、气道慢性炎症等特征。
1.1气道重塑与气流受限
可逆性气流受限主要是气道平滑肌可逆性收缩所致,这也是β-受体激动剂在哮喘治疗中的作用基础。支气管热成形术减少大气道平滑肌以减少哮喘恶化[6],亦证实大气道平滑肌在气流受限中的作用。哮喘儿童与慢性阻塞性肺病相关性的纵向前瞻性研究发现,哮喘儿童在成年早期出现不可逆气流受限的风险明显增加[7],而持续气流受限与气道平滑肌等结构变化有关[8]。2018年全球哮喘预防和处理策略指南中明确指出,不可逆性气流受限型哮喘由气道重塑所致[9]。而在炎症缺失下,反复气管收缩也可通过气道上皮压迫和平滑肌机械传感,激活和释放转化生长因子-β1(transforming growth factor-β1,TGF-β1)等,引起细胞增殖、细胞外基质沉积[10],导致气道重塑[11]。
1.2气道重塑与AHR
AHR是气道对各种刺激因子过强或过早的收缩。2013年美国胸科学会关于运动诱发的支气管收缩临床实践指南[12]指出,深吸气时支气管扩张效应丧失可能是运动型哮喘的发病机制,提示哮喘AHR可能与深吸气时支气管扩张丧失相关。支气管扩张取决于气道平滑肌延长的能力,而哮喘气道平滑肌在收缩刺激逐渐减弱时有维持短缩的内在能力,导致持久的气道狭窄[13]。这可能与气道平滑肌细胞内Ca2+转录偶联增加、平滑肌收缩增强有关[14]。即哮喘AHR与气道平滑肌在收缩刺激减弱后仍维持收缩的收缩模式相关。活化的气道上皮表达TGF-β1增加,诱导内皮素-1表达,引起平滑肌增生和胶原沉积等气道重塑改变,诱发AHR,使用内皮素-1抗体可消除AHR[15]。且上皮细胞旁分泌到平滑肌的信号对AHR的产生也有重要作用[16],AHR随气道重塑增加而加重[17]。故推测,AHR与气道重塑及平滑肌扩张丧失的收缩特性相关,气道上皮在AHR形成中也发挥重要作用,而TGF-β1可能是AHR与气道重塑联系的桥梁[18]。
1.3气道重塑与气道炎症
气道重塑与气道炎症的先后关系尚无定论。Holgate等[11]通过对气道活检和原代细胞培养的研究确定,哮喘是由环境伤害和修复反应增加所驱动的上皮性疾病,气道上皮是哮喘起源和持续性的基础。气道屏障功能缺陷与气道炎症无关,是哮喘发病中心机制,使气道早期易受病毒感染而刺激辅助性T细胞2(help T cell 2,Th2)应答和局部过敏原致敏。气道上皮细胞发出信号到上皮下间充质细胞鞘,形成上皮-间充质营养单位(the epithelial mesenchymal trophic unit,EMTU),活化的上皮细胞通过上皮-间充质转化,使上皮细胞分化成肌成纤维细胞,细胞外基质(extracellular matrix,ECM)蛋白沉积、上皮下纤维化增强[19-20],导致气道重塑,这一过程主要受TGF-β1驱动[18]。上皮基质沉积增加反应上皮屏障功能持续障碍,使气道上皮持续易感、EMTU持续激活[21],导致哮喘持续存在,并提供稳定的介质和生长因子微环境,导致气道持续性炎症和重塑。在气道炎症缺失下气道重塑仍能发展,即气道炎症与气道重塑平行发展[11,15,22]。活化的上皮细胞表达大量细胞因子、趋化因子、金属蛋白酶等,直接作用于网状基底膜使其增厚[21]。Th2应答增加细胞因子白介素-4,(IL-4)、IL-13等表达,刺激上皮细胞TGF-β释放[19]而影响EMTU功能、发生上皮-间充质转化[23]。且活化的上皮细胞表皮生长因子受体表达增加[21,24],使气道局部TGF-β和表皮生长因子失衡亦活化EMTU、激发上皮-间充质转化[23]。而潜在的EMTU可能处于持续活跃的修复状态,促使气道进行性重塑[11]。故TH2细胞因子与EMTU相互作用,促进、加重气道重塑和炎症。而TGF-β可刺激MMP-9表达,促进成纤维细胞生成胶原、平滑肌细胞增生和黏液高分泌、抑制胶原酶表达及基质金属蛋白酶组织抑制剂-1上调而抑制ECM降解[23]。故推测气道上皮功能障碍及Th2介导的炎症双重机制通过作用于气道结构细胞释放TGF-β、增强TGF-β介导的类过度修复机制而导致气道重塑[25]。通过4岁以下易患哮喘儿童支气管活检发现,气道重塑可能在很早的年龄、甚至临床表现出现前即已开始[26],且气道炎症并不是气道重塑发生所必须的[27]。基底膜增厚在哮喘早期便进行性发展,与其严重程度相关[28],可预测其未来发展[29]。这些表明哮喘气道重塑不一定是气道炎症的结果[22,27],哮喘发病前已有气道重塑[26],在炎症缺失时仍能发展[15,27]。
综上所述,气道重塑始于哮喘早期,是其主要特征,根据气道重塑的有无及程度,可预测哮喘发病风险、评估其有无及轻重、预测其预后。而吸入类固醇可能无法预防哮喘气道重塑[30],易于或已有气道重塑的患者可能需要与之不同的治疗。
2 MMP-9可作为哮喘气道重塑的特异性生物标志物
2.1哮喘气道重塑特异性
哮喘气道重塑的病理改变有[31]:气道上皮假复层结构受损、腺体肥大增生、上皮下网状基底膜增厚和细胞外基质增加、平滑肌增生肥厚、新生血管形成。在包括慢性支气管炎、肺气肿、支气管扩张及哮喘的慢性阻塞性肺疾病中[32],只有哮喘气道重塑有基底膜增厚、平滑肌增生等改变。在整个呼吸道壁的定位和结构变化中,哮喘气道重塑不同于其他慢性阻塞性肺疾病[25]。故用气道重塑来评估哮喘是可行的、特异性的。
2.2哮喘气道重塑生物标志物MMP-9
气道基底膜增厚是哮喘气道重塑的特征性改变[33]。上皮下ECM蛋白大量沉積—上皮下纤维化,是哮喘气道重塑的重要组成部分[34],与病情严重程度相关[28]。基质金属蛋白酶是一组结构相似的蛋白酶家族,负责ECM重塑等[23],可选择性地降解ECM成分,其中最主要的是MMP-9[35]。中性粒细胞对过敏原的暴露产生MMP-9[35],Th2细胞因子IL-4、IL-13增加TGF-β1[19]表达刺激MMP-9生成[23]。ECM合成与分解代谢呈动态平衡,MMP-9可降解Ⅳ型胶原、纤维连接蛋白等ECM,其抑制剂TIMP-1抑制MMP-9而使基质沉积,两者按比例释放以维持ECM稳定[25]。若其比例失衡,则ECM沉积使上皮下纤维化[36]。Barbaro等[37]通过测定呼出气冷凝液中MMP-9表达与第一秒用力呼气容积等相关性的研究证实,MMP-9在不同的哮喘表型中有不同程度的释放,随哮喘及气道重塑的加重而增加并在哮喘急性发作时表达进一步增加,可作为哮喘持续气道重塑的标志物。且MMP-9表达与哮喘患者肺功能成负相关[38],提示MMP-9可用于评估哮喘严重程度、监测气道重塑。而基底膜增厚在儿童哮喘早期、甚至发病前就已出现[26-27],提示在哮喘早期即可通过检测MMP-9来评估气道重塑及哮喘。哮喘儿童MMP-9基因3′末端变体的DNA测序也从基因层面证实,MMP-9值得作为哮喘的预测性生物标志物[39]。
综上所述,MMP-9可作为哮喘气道重塑的生物标志物用以评估哮喘气道重塑,而有助于哮喘的临床诊治与评估。
3哮喘气道重塑和MMP-9的检测和评估
目前检测气道重塑的方法主要有侵入性检查:支气管活检、肺泡灌洗液、电子支气管镜超声;非侵入性检查:高分辨率CT(HRCT)、气道反应性和肺功能检查及诱导痰、体液检查。其中,有的获取的信息有限、诱导不够敏感、时效性差或辐射暴露,有的设备昂贵、操作难、不易推广。MMP-9可作为哮喘气道重塑的标志物,在哮喘气道黏膜、痰、呼出气冷凝液、血液及肺泡灌洗液中均有升高[25,30,40],但哮喘急性发作时行支气管活检、肺泡灌洗很难配合,唾液中MMP-9的表达亦影响痰标本评估[41]。而呼出气冷凝液及血液检查,操作简单、设备要求不高、患者易接受,同时又避免了其他检查的不足,故可优先从检测呼出气冷凝液、血液中MMP-9来评估哮喘气道重塑。
常規检测MMP-9的标准酶谱法不能精确测定其活性,其研究结果不能提供足够的数据。而结合在溶液中或通过特异性抗体固定后检测天然酶,然后与标记的底物一起温育的体外测定,其灵敏度与超敏ELISA相当,甚至高出20倍。因此,标准酶谱法+体外测定可能是最好的MMP-9测定方法[30]。
4结语
目前仍无简便、可靠评估哮喘有无或其急性发作期严重程度的方法。哮喘气道重塑具有其特异性,始于病程早期,随哮喘的加重而加重。MMP-9可作为哮喘气道重塑生物标志物,若能类似脑钠肽评估心力衰竭一样定性或定量评估哮喘,则对临床明确诊断、评估严重程度、制定个体化治疗方案、预测预后都将产生重大意义。
[参考文献]
[1]Global burden of diaease stusy 2013 collaborators.Global,regional,and national incidence,prevalence,and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries,1990-2013:a systematic analysis for the Global Burden of Disease Study[J].Lancet,2015,386(9995):743-800.
[2]Croisant S.Epidemiology of asthma:prevalence and burden of disease[J].Adv Exp Med Biol,2014,795:17-29.
[3]Global burden of diaease stusy 2013 collaborators.Global,regional,and national age-sex specific mortality for 264 causes of death,1980-2016:a systematic analysis for the Global Burden of Disease Study 2016[J].Lancet,2017,390(10100):1151-1210.
[4]苏楠,林江涛,刘国梁,等.我国8省市支气管哮喘患者控制水平的流行病学调查[J].中华内科杂志,2014,53(8):601-606.
[5]中华医学会呼吸病学分会哮喘学组.支气管哮喘防治指南(2016年版)[J].中华结核和呼吸杂志,2016,39(9):675-697.
[6]Chakir J,Haj-Salem I,Gras D,et al.Effects of bronchial thermoplasty on airway smooth muscle and collagen deposition in asthma[J].Ann Am Thorac Soc,2015,12(11):1612-1618.
[7]Mc Geachie MJ,Yates KP,Zhou X,et al.Patterns of growth and decline in lung function in persistent childhood asthma[J].N Engl J Med,2016,374(19):1842-1852.
[8]Ferreira DS,Auid-Oho,Carvalho-Pinto RM,et al.Airway pathology in severe asthma is related to airflow obstruction but not symptom control[J].Allergy,2018,73(3):635-643.
[9]Global.Strategy for asthma management and prevention.Global Initiative for asthma[J].Eur Respir J,2008,31(1):143-178.
[10]Gosens R,Grainge C.Bronchoconstriction and airway biology:potential impact and therapeutic opportunities[J].Chest,2015,147(3):798-803.
[11]Holgate ST.Mechanisms of asthma and implications for its prevention and treatment:a personal journey[J].Allergy Asthma Immunol Res,2013,5(6):343-347.
[12]Parsons JP,Hallstrand TS,Mastronarde JG,et al.An official American Thoracic Society clinical practice guideline:exercise-induced bronchoconstriction[J].Am J Respir Crit Care Med,2013,187(9):1016-1027.
[13]Chapman DG,Pascoe CD,Lee-Gosselin A,et al.Smooth muscle in the maintenance of increased airway resistance elicited by methacholine in humans[J].Am J Respir Crit Care Med,2014,190(8):879-885.
[14]Sweeney D,Hollins F,Gomez E,et al.[Ca2+]i oscillations in ASM:relationship with persistent airflow obstruction in asthma[J].Respirology,2014,19(5):763-766.
[15]Gregory LG,Jones CP,Mathie SA,et al.Endothelin-1 directs airway remodeling and hyper-reactivity in a murine asthma model[J].Allergy,2013,68(12):1579-1588.
[16]Li S,Koziol-White C,Jude J,et al.Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness[J].J Clin Invest,2016,126(5):1978-1982.
[17]Das S,Miller M,Beppu AK,et al.GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation[J].Proc Natl Acad Sci U S A,2016,113(46):13132-13137.
[18]Ojiaku CA,Yoo EJ,Panettieri RA Jr.Transforming growth factor beta1 function in airway remodeling and hyperresponsiveness.the missing link[J].Am J Respir Cell Mol Biol,2017,56(4):432-442.
[19]Firszt R,Francisco D,Church TD,et al.Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-beta1 in airway fibroblasts in asthma[J].Eur Respir J,2014,43(2):464-473.
[20]Fischer KD,Hall SC,Agrawal DK.Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice[J].PLoS One,2016,11(2):e0149180.
[21]Sohal SS,Soltani A,Reid D,et al.A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial-mesenchymal transition (EMT) in large airway samples in COPD:an exploratory proof of concept study[J].Int J Chron Obstruct Pulmon Dis,2014,9:533-542.
[22]Castro-Rodriguez JA,AUID-Oho,Saglani S,et al.The relationship between inflammation and remodeling in childhood asthma:a systematic review[J].Pediatr Pulmono,2018, 53(6):824-835.
[23]Al-Alawi M,Hassan T,Chotirmall SH.Transforming growth factor beta and severe asthma:a perfect storm[J].Respir Med,2014.108(10): 1409-1423.
[24]Mahmood MQ,Sohal SS,Shukla SD,et al.Epithelial mesenchymal transition in smokers:large versus small airways and relation to airflow obstruction[J].Int J Chron Obstruct Pulmon Dis,2015,10:1515-1524.
[25]Grzela K,Litwiniuk M,Zagorska W,et al.Airway remodeling in chronic obstructive pulmonary disease and asthma: the role of matrix metalloproteinase-9[J].Arch Immunol Ther Exp (Warsz),2016,64(1):47-55.
[26]Berankova K,Uhlik J,Honkova L,et al.Structural changes in the bronchial mucosa of young children at risk of developing asthma[J].Pediatr Allergy Immunol,2014,25(2):136-142.
[27]Lezmi G,Gosset P,Deschildre A,et al.Airway remodeling in preschool children with severe recurrent wheeze[J].Am J Respir Crit Care Med,2015,192(2):164-171.
[28]Grigoras A,Grigoras CC,Giusca SE,et al.Remodeling of basement membrane in patients with asthma[J].Rom J Morphol Embryol,2016,57(1):115-119.
[29]Bonato M,Bazzan E,Snijders D,et al.Clinical and pathologic factors predicting future asthma in wheezing children.a longitudinal study[J].Am J Respir Cell Mol Biol,2018,59(4):458-466.
[30]Grzela K,Zagorska W,Krejner A,et al.Prolonged treatment with inhaled corticosteroids does not normalize high Activity of matrix metalloproteinase-9 in exhaled breath condensates of children with asthma[J].Arch Immunol Ther Exp (Warsz),2015,63(3):231-237.
[31]Prakash YS,Halayko AJ,et al.An Official American thoracic Society Research Statement:current challenges facing research and therapeutic advances in airway remodeling[J].Am J Respir Crit Care Med,2017,195(2):e4-e19.
[32]李玉林.病理学[M].8版.北京:人民卫生出版社,2013:169-173.
[33]Arafah MA,Raddaoui E,Kassimi FA,et al.Endobronchial biopsy in the final diagnosis of chronic obstructive pulmonary disease and asthma:a clinicopathological study[J].Ann Saudi Med,2018,38(2):118-124.
[34]Burgstaller G,Oehrle B,Gerckens M,et al.The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease[J].Eur Respir J,2017,50(1):pii1601805.
[35]Ventura I,Vega A,Chacon P,et al.Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens[J].Allergy,2014,69(7):898-905.
[36]Vogel ER,Britt RD Jr,Faksh A,et al.Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells[J].Pediatr Res,2017,81(2):376-383.
[37]Barbaro MP,Spanevello A,Palladino GP,et al.Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma[J].Eur J Intern Med,2014,25(1):92-96.
[38]Naik SP,PAM,B SJ,et al.Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma[J].J Asthma,2017,54(6):584-593.
[39]Dragicevic S,AUID-Oho,Kosnik M,et al.The Variants in the 3′ Untranslated Region of the Matrix Metalloproteinase 9 gene as modulators of treatment outcome in children with asthma[J].Lung,2018,196(3):297-303.
[40]Kleniewska A,Walusiak-Skorupa J,Piotrowski W,et al.Comparison of biomarkers in serum and induced sputum of patients with occupational asthma and chronic obstructive pulmonary disease[J].J Occup Health,2016,58(4):333-339.
[41]Rathnayake N,Gustafsson A,Norhammar A,et al.Salivary matrix metalloproteinase-8 and -9 and myeloperoxidase in relation to coronary heart and periodontal diseases:a subgroup report from the PAROKRANK study (Periodontitis and Its relation to coronary artery disease)[J].PLoS One.,2015,10(7):e0126370.
(收稿日期:2018-07-20 本文編辑:崔建中)