APP下载

黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响

2019-02-20强小嫚张凯米兆荣刘战东王万宁孙景生

中国农业科学 2019年3期
关键词:耕作夏玉米冬小麦

强小嫚,张凯,米兆荣,刘战东,王万宁,孙景生



黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响

强小嫚1,张凯1,米兆荣2,刘战东1,王万宁1,孙景生1

(1中国农业科学院农田灌溉研究所/农业部作物需水过程与调控重点实验室,河南新乡 453002;2河南科技学院园艺园林学院园艺系, 河南新乡 453003)

【目的】研究黄淮海平原地区冬小麦-夏玉米不同深松时机交互不同灌水次数对作物产量及水分生产效率的影响,为优化黄淮海地区土壤耕作方式提供理论依据。【方法】采用土壤耕作方式与灌水次数相结合的方法,设置秋深松+冬小麦2水(QS-2)、秋深松+冬小麦3水(QS-3)、夏深松+冬小麦2水(XS-2)、夏深松+冬小麦3水(XS-3)、对照(CK)共5个处理,研究深松与灌水次数对冬小麦-夏玉米一年两熟农田土壤物理性质、植株生长发育、产量、总产出值及水分生产效率等的影响。【结果】深松和灌水次数对土壤容重、土壤紧实度、土壤储水量、总产出值、水分生产效率均有不同程度显著影响。与对照相比,QS-2、XS-2、XS-3处理均显著降低深松后第1年土壤耕层(0—40 cm)及深松后第2年0—20 cm土层的土壤容重;深松各处理均显著降低第1年土壤紧实度,对第2年土壤紧实度影响效果不明显;秋深松后第2年QS-2处理的冬小麦整个生育期平均土壤储水量较CK显著增加18.14%,QS-3处理次之,夏深松后第2年XS-2、XS-3处理分别较CK显著提高24.7%、25.6%;秋深松能显著提高当季冬小麦生长发育,QS-2、QS-3处理地上生物量分别较CK增加了19.29%、27.06%,第2年QS-2和QS-3处理地上生物量较CK均有所提高,差异不显著,秋深松对第2年冬小麦生长发育影响效果减弱,夏深松第2年XS-2和XS-3处理的叶面积和地上生物量均较对照显著提高,夏深松能显著促进后茬冬小麦生长发育;QS-2处理对2年冬小麦-夏玉米总产出值和水分生产效率均显著提高,第1年总产出值和水分生产效率分别较CK提高27.21%、23.51%,第2年分别提高19.54%、18.84%,夏深松显著提高第2年冬小麦-夏玉米总产出值及水分生产效率,XS-2处理分别提高18.50%、17.65%,XS-3处理分别提高19.57%、15.35%。【结论】黄淮海平原冬小麦-夏玉米连作采用冬小麦播前秋深松耕作方式,冬小麦全生育期灌水2次,有利于降低农田土壤容重、降低土壤紧实度、提高土壤储水效果、显著提高深松周期内冬小麦-夏玉米总产出值及水分生产效率。建议在黄淮海平原地区平水年和丰水年(夏玉米季降雨充沛),冬小麦-夏玉米种植区采用秋深松+冬小麦灌2水耕作模式,实现高产与高效。

深松;灌水次数;产量;水分生产效率;节水增产效应;冬小麦;夏玉米

0 引言

【研究意义】黄淮海平原地区是中国重要的粮食生产基地,在保障国家粮食安全中具有十分重要的地位。该地区长期采用传统的冬小麦播前旋耕、夏玉米免耕播种的耕作模式,导致土壤耕层逐年变浅、犁底层逐渐变硬变厚,耕层质量日趋下降,造成土壤生产能力持续减弱。该地区降水量主要集中在夏玉米生长季(7—9月份),冬小麦生长季主要采用传统地面灌溉等粗放式灌溉方式,水分利用效率低下,水资源浪费严重。不合理耕层结构及粗放的灌溉制度加剧了农业用水无法高效利用,已成为限制该地区粮食稳产高产的主要因素。因此,通过深松耕作措施打破犁底层,改善土壤结构、增强土壤蓄水能力、提高水分利用效率,是黄淮海地区的粮食生产重要农业技术之一,同时,研究深松耕作方式下配备的科学合理的灌溉制度,以期为该地区深松耕作的推广提供科学依据。【前人研究进展】前人研究表明,深松耕作能有效降低土壤容重及土壤紧实度、增加土壤通透性、提高土壤蓄水能力,提高产量及水分利用效率[1-3]。孔晓民等[4]研究表明,深松后耕层土壤容重较常规旋耕和免耕分别下降6.5%和8.8%,土壤紧实度分别下降25.6%和32.3%,产量分别增加4.3%和5.7%。尹宝重等[5]研究表明,海河低平原渠灌区深松处理较旋耕和深耕处理相比,明显提高20—80 cm土层土壤含水量,对降水和灌水的消耗比例显著高于其他处理,同时显著提高冬小麦产量及水分利用效率。MOHANTY等[6]研究表明,深松能打破犁底层,改善土壤的渗透性能,利于降水和灌溉水的接纳和蓄存能力,提高水分利用效率。王万宁等[7]研究表明,0—40 cm土层,深松处理较旋耕处理土壤容重降低了0.63%—3.85%,孔隙度提高了0.27%—3.67%,夏玉米产量提高了9.5%,水分利用效率提高了5.08%。SU等[8]在中国北部黄土高原地区连续6年试验研究表明,深松处理的水分利用利用效率明显高于旋耕和常规耕作处理。QIN等[9]研究表明,深松处理能增加降水入渗,提高土壤贮水能力。然而也有研究[10-13]指出深松后土壤容重无显著性变化,土壤水分蒸发加剧,甚至出现作物减产现象。这可能与深松时机有关,也可能因为缺乏与深松耕作方式相配套的灌水技术模式,具体结论和原因还有待进一步深入研究。【本研究切入点】黄淮海平原地区常年采用传统耕作结合大水漫灌灌溉方式,容易造成大量灌溉水无效蒸发或径流。传统耕作模式灌溉施肥后,上层土壤水分和养分充足,而犁底层紧实的土壤结构导致土壤水分和养分不能有效补充至深层土壤,不利于作物最优根系的构建,容易造成后期倒伏,不利于作物高产的形成,又不利于机械化收获。前人研究多测重研究单一的土壤耕作方式和土壤水分对土壤物理性状、土壤水分变化、产量及水分利用效率等的影响,极少探讨不同土壤耕作方式及灌溉技术对农田土壤性状、作物生长发育及水分利用效率等的交互作用。因此,制定科学合理的耕作方式并提出配套的灌溉技术模式,是该地区冬小麦-夏玉米节水高产栽培的关键技术之一。【拟解决的关键问题】本研究通过2年试验,研究冬小麦播前深松-夏玉米免耕播种、冬小麦播前旋耕-夏玉米播前深松及冬小麦播前旋耕-夏玉米免耕播种(CK)3种耕作方式与作物不同关键生育期灌水次数的组合模式对田间土壤理化性质、土壤贮水能力、作物产量形成及水分生产效率等的影响,提出有利于作物高产稳产及水资源高效利用的耕作模式及其配套的灌溉技术,为推进节水型社会建设、保障粮食安全的耕作方式及灌溉模式进行示范和推广提供科学依据。

1 材料与方法

1.1 试验区概况

试验于2015年10月至2017年9月在河南省新乡市获嘉县(35.29°N、113.64°E,海拔78 m)进行。该地区属于典型黄淮海平原地区,多年平均气温14.6°C,无霜期221 d,日照时数2 058.4 h,多年平均降雨量为574.5 mm。2015年10月至2017年9月试验期间月降雨量见图1,可知,2016年为丰水年,深松后第一季冬小麦-夏玉米生育周期(2015年10月至2016年9月)共降雨880.5 mm,较长期(1951—2015年)平均降雨量(574.5 mm)高53.3%,冬小麦季节降雨量为184.8 mm,夏玉米季节降雨量为695.7 mm,夏玉米生育关键期降雨充沛,故该季夏玉米无需进行灌溉。2017年为平水年,深松后第2季冬小麦-夏玉米生育周期(2016年10月至2017年9月)降雨量为522.9 mm,较长期平均降雨量低9.0%,冬小麦季节降雨量为246.9 mm,夏玉米季节降雨量为276.0 mm。试验地土质为砂壤土,田间持水量为25.6%,0—1 m土层的土壤理化性质为:pH 8.74,土壤电导率为193.47 μS·cm-1。0—40 cm土层碱解氮含量为48.68 mg·kg-1,速效磷为15.19 mg·kg-1,速效钾为97.15 mg·kg-1,有机质为8.5 g·kg-1。

图1 2015—2017年试验期间月降雨量

1.2 试验设计

供试冬小麦和夏玉米品种分别为矮抗58和登海605。冬小麦播种量为225 kg·hm-2,行距25 cm。底肥采用三环复合肥料(N-P2O5-K2O:15-15-15总养分≥45%),施肥量为750 kg·hm-2,种、肥同播,拔节期畦灌追施“心连心”尿素(总氮≥46.4%)375 kg·hm-2。夏玉米种植密度为6.7万株/hm-2,株距25 cm,行距60 cm,底肥采用“登海605”缓控释玉米专用掺混肥料(N-P2O5-K2O:27-8-5总养分≥40%)900 kg·hm-2,种、肥同播,期间无追肥。

试验为裂区试验设计,主因素为耕作方式,设冬小麦播前深松—夏玉米免耕播种(秋深松,QS)、冬小麦播前旋耕—夏玉米播前深松(夏深松,XS)和冬小麦播前旋耕—夏玉米免耕播种(旋耕,CK)3种耕作水平;副因素为冬小麦灌水次数,根据该项目组近几年在冬小麦、夏玉米节水灌溉试验中采取的灌水技术为参考,设为:冬小麦2水(冬灌+拔节水)、冬小麦3水(冬灌+拔节水+孕穗水)共2个灌水水平,以旋耕+冬小麦灌2水作为对照处理,共5个处理,每个处理重复3次,分别为:秋深松+冬小麦2水(QS-2)、秋深松+冬小麦3水(QS-3)、夏深松+冬小麦2水(XS-2)、夏深松+冬小麦3水(XS-3)、对照(CK)。2016年夏玉米季降雨比较充沛,夏玉米全生育期无需灌水,2017年结合当季降雨情况,夏玉米生育期共灌水2次(出苗水+拔节水)。灌水式为畦灌灌水方式,灌水定额为90 mm。畦田规格设为3 m×50 m,共15个小区。

秋深松时间为2015年10月(冬小麦播种前),夏深松时间为2016年5月(夏玉米播种前),深松深度为35 cm,深松周期为2年深松1次。旋耕深度为15 cm。深松机采用山东大华机械有限公司的大华宝来1S-250型深松机,深松铲为全方位弧面倒梯型,同时作业行数为4行,铲间距62 cm,工作幅宽250 cm。旋耕机采用河北双天机械制造有限公司的1GKN-220A1型中高箱旋耕机。前茬作物收获后秸秆全量粉碎还田,各处理其他田间管理措施相同。

1.3 测定项目与方法

1.3.1 土壤容重测定 冬小麦、夏玉米成熟期,各处理挖取1 m×1 m×0.6 m的长方体坑,采用环刀法(体积为100 cm3)分别测定0—50 cm土层土壤容重,每10 cm为一层,每处理重复3次。

1.3.2 土壤紧实度 冬小麦、夏玉米成熟期采用土壤紧实度仪(Sc¬900 Soil Compaction Mate)测定各处理畦首(畦长1/5处)、畦中(畦长1/2处)、畦尾(畦长4/5处)处土壤紧实度,测定深度为0—50 cm,每处理重复3次。

1.3.3 土壤含水量 冬小麦、夏玉米各个生育期采用土钻取土烘干法测定田间土壤含水量,测定深度为0—100 cm,每20 cm为一层,采用精度为0.01 g的电子天平称称取湿土重和干土重。灌水和降雨前后加测一次。

1.3.4 植株生长发育指标 冬小麦、夏玉米各生育期内,每个小区随机选取5株长势均一无病虫害的植株于各个生育阶段定期观测株高和叶面积,测量时采用精度为0.1 cm的钢尺量取株高(最顶叶完全伸展至茎基部距离)和每片叶长、叶宽;另选取长势均一、无病虫害的植株测量地上生物量,测量时采用0.01 g电子天平称取每部分(茎、叶、穗)干物质,105℃杀青30 min,75℃烘干至恒重测定干物质重量。每个处理重复3次。

1.3.5 产量 冬小麦成熟后,每小区随机选取1 m×2 m样方进行收获,籽粒风干后称重计产;夏玉米成熟后,每小区收获2 m双行果穗,籽粒风干后称重计产。每处理重复3次。

1.3.6 田间耗水量 田间耗水量采用水量平衡法[14-15]计算,见公式(1):

=++-f-+(0-t) (1)

式中,为阶段耗水量(mm);为时段内净灌水总量(mm);为时段内总降雨量(mm);为时段内地下水补给量(mm),由于试验地地下水位较深,一般在5.0 m以下,作物无法吸收利用,故认为可忽略地下水补给,即≈0;f为时段内地表径流量(mm),由于试验区地势平坦,故无地表径流产生,f≈0;为时段内根区的深层渗漏量(mm),其计算方法为灌水(或降雨)前100 cm土层内有效土壤含水量(mm)+灌水量(或降雨量,mm)-田间持水量(mm);0、t分别为时段初期和时段末期的土壤储水量(mm)。

1.3.7 水分生产效率 作物水分生产效率(Water Productivity,WP)等于作物经济效益与作物耗水量的比值[16],见公式(2):

=/(2)

式中,为水分生产效率(元/m3);为冬小麦和夏玉米总的经济效益(元);为田间总实际耗水量(mm)。

1.4 数据统计分析

运用Excel和DPS软件对试验数据进行统计分析,采用LSD法进行差异显著性比较(a=0.05)。

2 结果

2.1 不同耕作方式及水分处理对田间土壤容重的影响

分别于2016年和2017年冬小麦-夏玉米连作系统结束时观测田间土壤容重,结果见表1。分析可知,深松后第1年QS-2、XS-2和XS-3处理较CK相比均显著降低了0—40 m土层土壤容重,40—50 cm土层各处理无显著性差异。0—40 m土层中,QS-2处理土壤容重较CK降低5.3%(<0.05)、XS-2处理较CK降低5.9%(<0.05)、XS-3处理较CK降低4.8%(<0.05),QS-3处理与CK相比各土层土壤容重有所降低,但差异不显著。说明采用秋深松和夏深松耕作方式结合适宜的灌水次数在深松后第1年均不同程度降低了土壤耕层0—40 cm土层土壤容重。2017年结果为,QS-2、XS-2和XS-3处理较对照相比均显著降低了0—20 cm土层土壤容重,20—40 cm土层容重有所降低,差异不显著,QS-3处理各土层土壤容重与CK比较接近,无显著性差异。表明秋深松且冬小麦灌3水对土壤容重的影响小于其他深松处理,原因可能是过多的灌水导致耕层土壤板结,也可能是土壤容重测定过程存在的误差导致,具体原因还有待进一步试验研究确定。总体看来,深松处理第1年土壤耕层土壤容重显著降低,第2年土壤容重的影响效果减弱。

2.2 不同耕作方式及水分处理对田间土壤紧实度的影响

表2为2016年和2017年冬小麦-夏玉米连作系统结束时不同土壤耕层土壤紧实度变化情况,可知,2016年深松处理整体上显著降低0—40 cm土层土壤紧实度,其中,QS-2、QS-3、XS-2和XS-3分别较对照降低34.1%、31.3%、40.4%及37.5%。40—50 cm土层各处理无显著性差异。2017年各处理在各土层均较CK相比偏小,但差异不显著。表明,深松耕作方式能有效降低深松后第1年冬小麦-夏玉米连作系统农田土壤紧实度,为作物根系生长发育创造了适宜的土壤环境,对第2年土壤紧实度影响不明显。

2.3 不同耕作方式及水分处理对土壤储水量的影响

图2为不同耕作方式及水分处理下冬小麦田间土壤水分动态变化过程(2017年),可知,深松后第2年各处理0—100 cm土层土壤储水量均高于对照处理,灌水和降雨后,深松处理0—100 cm土层土壤储水量显著高于对照处理,冬灌和拔节期灌水1周后(12月24日、3月18日),QS-2处理较CK土壤含水量显著提高,其次为QS-3处理,表明秋深松灌2水相比秋深松灌3水在第2年田间保水效果更好。抽穗期灌水1周后(4月22日),QS-3处理土壤含水量较CK显著提高26.93%,XS-3处理较CK提高21.32%,这是由于抽穗期QS-3和XS-3处理均较其他处理多灌1次水,因此土壤储水量较高。整体可以看出,QS-2处理整个生育期平均土壤储水量最高,较CK增加了18.14%,QS-3处理次之,整个生育期较CK增加了16.69%,XS-2和XS-3处理与CK处理无显著差异。表明,秋深松灌2水在第二季冬小麦生育期间仍然有利于土壤水分向深层蓄积,增加了下层土壤含水量。综合考虑耕作方式和灌水次数双重作用可知,深松处理使得土壤耕层土壤容重降低,孔隙度增大,当灌水次数适宜时,土壤水分入渗性能得以提高,能有效接受适度灌水,在冬小麦第二季仍具有提高土壤蓄水的能力。当灌水次数较多时,过多的灌水对土壤结构具有一定的影响,细土粒随水分入渗导致土壤容重增加,引起表层土壤板结,故秋深松冬小麦灌3水在冬小麦第二季土壤储水量并没有因为增加一次灌水而提高。

表1 不同耕作方式和水分处理对土壤容重的影响

同一年份同列不同字母表示处理间差异显著(<0.05)。下同

Different letters in the same column in same year meant significant difference among treatments at 0.05 level. The same as below

表2 耕作方式和灌溉模式对土壤紧实度的影响

图3为不同耕作方式及水分处理下夏玉米田间土壤水分动态变化过程(2017年),可知,深松后第2年夏玉米季深松各处理0—100 cm土层土壤储水量均高于对照处理,灌水后差异较大,其他时期各处理差异不显著。苗期和拔节期灌水1周后(6月25日、7月27日)土壤储水量数据可知,灌水后深松各处理明显高于对照,其中XS-2、XS-3处理分别较CK提高24.7%、25.6%,差异显著。QS-2、QS-3处理分别较CK提高12.2%、18.0%,差异不显著。8月30日降雨40.5 mm,深松各处理含水量高于对照处理,各处理差异较小。表明,夏深松对第2年夏玉米田间土壤水分含量在灌水后影响较大,随着生育进程的推进,深松对土壤储水量的影响效果差异不明显。综合分析深松后第二季冬小麦和夏玉米农田土壤储水量可知,深松处理结合适宜的灌水次数对于土壤储水量的后效至少延续至第2年。

图2 不同耕作方式和水分处理下冬小麦0—100 cm土层土壤含水量动态变化(2017)

图3 不同耕作方式和水分处理下夏玉米0—100 cm土层土壤含水量动态变化(2017)

2.4 不同耕作方式和水分处理对作物株高、叶面积和地上生物量的影响

秋深松处理显著增加了当季冬小麦灌浆期株高、叶面积及地上生物量含量(表3)。2016年QS-2和QS-3处理株高较CK分别增加了14.24%、27.86%,叶面积分别增加了35.61%、57.74%,地上生物量分别增加了19.29%、27.06%。XS-2处理在株高、叶面积及地上生物量方面与CK无显著差异,XS-3处理叶面积较CK显著增加24.46%,其他方面无显著差异。原因是夏深松在冬小麦收获后进行,深松耕作方式对前茬冬小麦生长指标的影响是不存在的,而XS-3处理比CK多1次灌水导致其在灌浆期叶面积较CK显著提高。秋深松第2年冬小麦灌浆期株高、叶面积及地上生物量有所提高,但较第1年效果减弱。2017年数据显示,QS-3处理在叶面积上较CK显著提高32.90%,与第1年相比有所降低。株高和地上生物量方面QS-2和QS-3处理较CK有所提高,差异不显著。XS-2和XS-3处理在叶面积和地上生物量方面均较对照显著提高,说明夏深松对后茬冬小麦的生长发育有积极促进作用。表明,秋深松能显著提高当季冬小麦生长发育,对第2年冬小麦生长发育影响效果减弱。夏深松能显著促进后茬冬小麦生长发育。

秋深松和夏深松处理与对照相比均显著增加了第1年夏玉米抽雄期叶面积和地上生物量的积累(表4),夏深松影响效果强于秋深松处理。2016年XS-2和XS-3处理叶面积较CK分别增加了23.83%、25.28%,地上生物量分别增加了29.57%、33.28%。QS-2和QS-3处理叶面积分别增加了19.30%、17.90%,地上生物量分别增加了16.48%、18.45%。2016年夏玉米生育期降雨充沛,整个生育期不进行灌溉,深松处理对降雨的有效利用明显改善了田间土壤水分状况,促进了夏玉米植株的生长发育。夏深松第2年夏玉米抽雄期作物生长指标较CK有所提高,但较第1年效果减弱,其中XS-2和XS-3处理与CK相比叶面积和地上生物量表现出显著差异,秋深松对第2年夏玉米生长发育指标无显著影响。

表3 不同耕作方式和水分处理对冬小麦灌浆期作物生长发育的影响

表4 不同耕作方式和水分处理对夏玉米抽雄期作物生长发育的影响

2.5 不同耕作方式及水分处理对作物产量、经济效益及水分生产效率的影响

不同耕作方式及水分处理下冬小麦及夏玉米产量、产出值及水分生产效率见表5。2016年数据显示,深松后第1年冬小麦-夏玉米总产出值表现为QS-3>QS-2>XS-2>XS-3>CK,QS-3、QS-2、XS-2、XS-3处理分别较CK提高27.53%、27.21%、18.17%、17.83%,各处理均与CK相比差异显著。水分生产效率表现为:QS-2>QS-3>XS-3>XS-2>CK,QS-2、QS-3、XS-3、XS-3处理分别较CK提高23.51%、19.48%、15.46%、14.52%,各处理均与CK相比差异显著。分析可知,秋深松QS-2处理较QS-3处理总产出值略高,夏深松XS-3处理较XS-2处理总产出值略高,均无显著差异,同等深松条件下并没有因为多灌1水而显著提高产量。2017年数据显示,深松第2年冬小麦-夏玉米总产出值表现为:XS-3>QS-2>XS-2>QS-3>CK,XS-3、QS-2和XS-2分别较CK提高19.57%、19.54%、18.50%,三者均与CK相比差异显著。水分生产效率表现为:QS-2>XS-2>XS-3>QS-3>CK,QS-2、XS-2和XS-3处理分别较CK提高18.84%、17.65%、15.35%,三者均与CK相比差异显著。秋深松对第2年冬小麦和夏玉米产量、总产出值及水分生产效率影响效果较第1年相比有所减弱。说明秋深松灌2水对2年冬小麦-夏玉米总产出值和水分生产效率方面有显著提高作用,夏深松对后茬冬小麦产量有明显促进作用,显著提高了第2年冬小麦-夏玉米总产出值及水分生产效率。

表5 不同耕作方式和水分处理下作物产量、经济效益及水分生产效率

冬小麦价格参照当年市场参考价2.2元/kg计算,夏玉米价格参照当年市场参考价1.6元/kg计算

Price of winter wheat was 2.2 yuan/kg according to market price in 2016 and 2017, price of summer maize was1.6 yuan/kg according to market price in 2016 and 2017

3 讨论

深松利用深松铲疏松土壤,加深耕层而不翻转土壤,打破了犁底层,降低耕层土壤容重,提高了土壤孔隙度,进而改善了耕层土壤结构与通气状况[17],有效提高了土壤蓄水保墒能力[18-19]。李荣等[20]研究表明,深松结合不同覆盖方式能有效降低耕层土壤体积质量,增大土壤孔隙度。王万宁等[7]研究表明,冬小麦播前深松显著降低了后茬夏玉米苗期、拔节期0—40 cm土层土壤容重和土壤紧实度。翟振等[21]研究表明,犁底层破除2/3及完全破除犁底层能够显著降低10—30 cm土层土壤容重和穿透阻力。BORGHEI等[22]研究表明,深松不仅可以加深耕层,对土壤紧实具有良好的改良效应,还可以改善土壤通透性,提高土壤蓄水能力和水分利用效率。本研究表明,深松后第1年,冬小麦-夏玉米连作系统结束时QS-2、XS-2和XS-3处理较CK相比均显著降低了0—40 cm土层容重,深松后第2年QS-2、XS-2和XS-3处理较对照相比均显著降低了0—20 cm土层容重,20—40 cm土层容重有所降低,差异不显著,QS-3处理土壤容重对耕作措施的响应小于其他处理,与CK相比差异不显著。本研究同时表明,深松后第1年0—40 cm土层土壤紧实度显著降低,QS-2、QS-3、XS-2和XS-3分别较对照降低34.1%、31.3%、40.4%及37.5%,深松后第2年各处理均较CK偏小,但差异不显著。本研究认为,深松后第1年0—40 cm土壤耕层土壤容重和土壤紧实度显著降低,第2年后深松对土壤容重和土壤紧实度的影响效果减弱。主要原因是,深松打破了犁底层,改善了土壤结构,增加了土壤通透性,深松第1年后结合适宜的灌水次数能有效降低土壤容重和土壤紧实度,2016年夏玉米季强降雨导致土壤表层积水较多,土壤发生板结现象,因此深松第2年后土壤容重和土壤紧实度影响效果减弱。

深松利用深松铲在土壤中划出条带性的深松沟,并不扰乱土层,加深耕层,疏松土壤,可有效改善土壤的渗透性,提高旱地蓄水保墒性能,进而提高产量和水分利用效率[23-24]。深松能打破犁底层,改善土壤的渗透性能和对降水的接纳和蓄存能力,提高旱地蓄水保墒性能和水分利用效率[25]。柏炜霞等[26]研究表明,免耕/深松轮耕处理0—200 cm土层土壤蓄水量较连续翻耕处理提高18.2 mm。本研究表明,秋深松冬小麦灌2水在第2季冬小麦生育期间仍然有利于土壤水分向深层蓄积,增加了下层土壤含水量。夏深松对第2年夏玉米田间土壤水分含量在灌水后影响较大,其他时期影响较小。这是由于深松耕作方式结合适宜的灌水次数能有效改善土壤结构,使得水分在短时间内下渗到深层并储存,避免了灌溉水的无效蒸发和径流的发生。因此其贮水能力较好。

深松耕作通过改善土壤结构,提高土壤耕层土壤蓄水量,促进了作物生长发育及干物质积累能力,进而提高了产量和水分利用效率[27]。王红光等[28]研究表明,较其他耕作模式,深松+条旋耕有助于提高小麦开花至成熟期的干物质积累量、穗粒数和水分利用效率。李华等[29]研究表明,深松可有效打破犁底层,显著改善土壤物理结构,有利于作物根系下扎,促进作物生长发育,有利于玉米的高产稳产。本研究表明,秋深松和夏深松均能显著提高第1年冬小麦和夏玉米生长发育,第2年冬小麦和夏玉米生长发育影响效果减弱。秋深松灌2水对2年冬小麦-夏玉米总产出值和水分生产效率方面有显著提高作用。夏深松对后茬冬小麦产量有明显促进作用,显著提高了第2年冬小麦-夏玉米总产出值及水分生产效率。这是由于夏深松在夏闲期打破了犁底层,相比传统耕作措施有利于提高夏闲期土壤对降水的保蓄[30],提高了冬小麦播前的土壤墒情,有利于冬小麦产量的形成。朱文新等[31]研究表明,深松和灌水次数均可显著提高春玉米产量,且相同灌水次数下深松处理提高春玉米产量1 786.48—1 827.30 kg·hm-2。本研究表明,秋深松和夏深松均提高了周年总耗水量,同时随着深松条件下灌水次数的增多,耗水量也随之增加,深松条件下适宜的灌水次数能显著提高水分生产效率。本研究表明,秋深松灌2水在第1年显著提高总产出值和水分生产效率,同时该处理第2年在总产出值和水分生产效率方面亦表现出明显优势。

本研究在该地区气候条件下特定的耕层结构下展开,对于不同气候条件或不同耕层结构结果可能会产生差异,因此本研究结果只适应于该地区气候条件下的耕作措施,并不是各种情况下的普适性结论。

4 结论

黄淮海平原地区冬小麦-夏玉米一年两熟种植模式,在平水年和丰水年(夏玉米季降雨充沛)气候条件下,采用冬小麦播前秋深松耕作方式,冬小麦生育期灌水2次,可显著降低深松周期内连作系统第1年0—40 cm土层土壤容重及土壤紧实度,第2年影响效果减弱;提高了农田土壤储水量,促进了作物生长发育并显著提高作物产量和水分生产效率,其中,第1年总产出值和水分生产效率分别较CK提高27.21%、23.51%,第2年分别提高19.54%、18.84%。该地区特定气候条件下,冬小麦-夏玉米连作系统中,采用秋深松耕作方式,冬小麦灌2水,夏玉米视该季节降雨情况灌0—2水的灌溉耕作模式,可达到节水增产高效的目的。

[1] Muhammad I, AnwarulHassan, Muhammad I. Effects of tillage systems and mulch on soil physical quality parameters and maize (L.) yield in semi-arid Pakistan., 2008, 25(4): 311-325.

[2] Borghei A M, Taghinejad J, Minaei S, Karimi M, Varnamkhasti M. Effects of subsoiling on soil bulk density, penetration resistance and cotton yield in northwest of Iran., 2008, 10(1): 120-123.

[3] 魏欢欢, 王仕德, 杨文稼, 孙海妮, 殷俐娜, 邓西平. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析, 中国农业科学, 2017, 50(3): 461-473.

WEI H H, WANG S D, YANG W J, SUN H N, YIN L N, DENG X P. Mata analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau., 2017, 50(3): 461-473. (in Chinese)

[4] 孔晓民, 韩成卫, 曾苏明, 吴秋平, 刘丽. 不同耕作方式对土壤物理性状及玉米产量的影响. 玉米科学, 2014, 22(1): 108-113.

KONG X M, HAN C W, ZENG S M, WU Q P, LIU L. Effects of different tillage managements on soil physical properties and maize yield.2014, 22(1): 108-113. (in Chinese)

[5] 尹宝重, 张永升, 甄文超. 海河低平原渠灌区麦田深松的节水增产效应研究. 中国农业科学, 2015, 48(7): 1311-1320.

YIN B Z, ZHANG Y S, ZHEN W C. Effects of sub-soiling tillage on wheat field water-saving and yield-increasing in canal irrigation district of Haihe Lowland Plain., 2015, 48(7): 1311-1320. (in Chinese)

[6] Mohanty M, Bandyopadhyay K K, Painuli D K, Ghosh P K, Misra A K. Water transmission characteristics of a vertisol and water use efficiency of rainfed soybean (( L.)Merr.) under subsoiling and manuring., 2007, 93(2): 420-428.

[7] 王万宁, 强小嫚, 刘浩, 孙景生, 马筱建, 崔永生. 麦前深松对夏玉米土壤物理性状和生长特性的影响. 水土保持学报, 2017, 31(6): 229-236.

WANG W N, QIANG X M, LIU H, SUN J S, MA X J, CUN Y S. Effects of subsoiling before sowing of winter wheat on soil physical properties and growth characteristics of summer maize., 2017, 31(6): 229-236. (in Chinese)

[8] Su Z Y, Zhang J S, Wu W L, Cai D X, Lv J J, Jiang G H, Huang J,Gao J, Hartmann R, Gabriels D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China., 2007, 87(3): 307-314.

[9] Qin H L, Gao W S, Ma Y C, Ma L, Yin C M, Chen Z, Chen C L. Effects of subsoiling on soil moisture under no-tillage for two years., 2008, 41(1): 78-85.

[10] Olesen J E, Munkholm L J. Subsoil loosening in a crop rotation for organic farming eliminated plough pan with mixed effects on crop yield., 2007, 94(2): 376-385.

[11] 晋鹏宇, 任伟, 陶洪斌, 王璞. 深松对夏玉米物质生产、光合性能及根系生长的影响. 玉米科学, 2014, 22(1): 114-120.

JIN P Y, REN W, TAO H B, WANG P. Effects of subsoiling on dry matter production, photosynthetic performance and root development of summer maize.2014, 22(1): 114-120. (in Chinese)

[12] Anne K, Peter M, Nyambilila A, GACHENE C K, PATRICK G. Tillage effects on selected soil physical properties in a maize-bean intercropping system in Mwala District, Kenya., 2014(7): 1-12.

[13] Osunbitan J A, Oyedele D J, Adekalu K O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria., 2005, 82(1): 57-64.

[14] MOFOKE A L E, ADEXUMI J K, BABATUNDE F E, MUDIARE O J, RAMALAN A A. Yield of tomato grown under continuous-flow drip irrigation in Bauchi state of Nigeria. Agricultural Water Management, 2006, 84(1): 166-172.

[15] ERTEK A, SENSOY S, GEDIK I, KÜCÜKYUMUK C. Irrigation scheduling based on pan evaporation values for cucumber (L.) grown under field conditions. Agricultural Water Management, 2006, 81(1): 159-172.

[16] ALI M H, TALUKDER M S U. Increasing water productivity in crop production—A synthesis. Agricultural Water Management, 2008, 95(11): 1201-1213.

[17] 秦红灵, 高旺盛, 马月存, 马丽, 尹春梅. 两年免耕后深松对土壤水分的影响. 中国农业科学, 2008, 41(1): 78-85.

QIN H L, GAO W S, MA Y C, MA L, YIN C M. Effects of subsoiling on soil moisture under no-tillage 2 years later., 2008, 41(1): 78-85. (in Chinese)

[18] 何进, 李洪文, 高焕文. 中国北方保护性耕作条件下深松效应与经济效益研究. 农业工程学报, 2006, 22(10): 62-67.

HE J, LI H W, GAO H W. Subsoiling effect and economic benefit under conservation tillage mode in Northern China., 2006, 22(10): 62-67. (in Chinese)

[19] PIKUL J L J, AASE J K. Water infiltration and storage affected by subsoiling and subsequent tillage., 2003, 67(3): 859-866.

[20] 李荣, 侯贤清. 深松条件下不同地表覆盖对马铃薯产量及水分利用效率的影响. 农业工程学报, 2015, 31(20): 115-123.

LI R, HOU X Q. Effects of different ground surface mulch under subsoiling on potato yield and water use efficiency., 2015, 31(20): 115-123. (in Chinese)

[21] 翟振, 李玉义, 郭建军, 王婧, 董国豪, 郭智慧, 逄焕成. 耕深对土壤物理性质及小麦-玉米产量的影响. 农业工程学报, 2017, 33(11): 115-123.

ZHAI Z, LI Y Y, GUO J J,WANG J, DONG G H, GUO Z H, PANG H C. Effect of tillage depth on soil physical properties and yield of winter wheat-summer maize., 2017, 33(11): 115-123. (in Chinese)

[22] Borghei A M, Taghinejad J, Minaei S, Karimi M, Varnamkhasti M G. Effect of subsoiling on soil bulk density, penetration resistance and cotton yield in northwest of Iran., 2008, 10(1): 120-123.

[23] 郭志军, 佟金, 周志立, 任露泉. 深松技术研究现状与展望. 农业工程学报, 2001, 17(6): 169-174.

GUO Z J, TONG J, ZHOU Z L, REN L Q. Review of subsoiling techniques and their applications., 2001, 17(6): 169-174. (in Chinese)

[24] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47(17): 3359-3371.

ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system., 2014, 47(17): 3359-3371. (in Chinese)

[25] 郑侃, 何进, 李洪文, 王庆杰, 李问盈. 中国北方地区深松对小麦玉米产量的Meta分析. 农业工程学报, 2015, 31(22): 7-15.

ZHENG K, HE J, LI H W, WANG Q J, LI W Y. Meta-analysis on maize and wheat yield under subsoiling in Northern China., 2015, 31(22): 7-15. (in Chinese)

[26] 柏炜霞, 李军, 王玉玲, 王丽. 渭北旱塬小麦玉米轮作区不同耕作方式对土壤水分和作物产量的影响. 中国农科科学, 2014, 47(5): 880-894.

BAI W X, LI J, WANG Y L, WANG L. Effects of different tillage methods on soil water and crop yield of winter wheat-spring maize rotation region in Weibei Highland., 2014, 47(5): 880-894. (in Chinese)

[27] 郑成岩, 于振文, 张永丽, 王东, 石玉, 许振柱. 土壤深松和补灌对小麦干物质生产及水分利用效率的影响. 生态学报, 2013, 33(7): 2260-2271.

ZHENG C Y, YU Z W, ZHANG Y L, WANG D, SHI Y, XU Z Z. Effects of subsoiling and supplemental irrigation on dry matter production and water use efficiency in wheat., 2013, 33(7): 2260-2271. (in Chinese)

[28] 王红光, 于振文, 张永丽, 石玉, 王东. 耕作方式对旱地小麦耗水特性和干物质积累的影响, 作物学报, 2012, 38(4): 675-682.

WANG H G, YU Z W, ZHANG Y L, SHI Y, WANG D. Effects of tillage regimes on water consumption and dry matter accumulation in dryland wheat., 2012, 38(4): 675-682. (in Chinese)

[29] 李华, 逄焕成, 任天志. 深旋松耕作法对东北棕壤物理性状及春玉米生长的影响. 中国农业科学, 2013, 46(3): 647-656.

LI H, PANG H C, REN T Z. Effects of deep rotary-subsoiling tillage method on brown physical properties and maize growth in Northeast of China.2013, 46(3): 647-656. (in Chinese)

[30] 侯贤清, 李荣, 韩清芳, 王维, 贾志宽. 夏闲期不同耕作模式对土壤蓄水保墒效果及作物水分利用效率的影响. 农业工程学报, 2012, 28(3): 94-100.

Hou X Q, Li R, Han Q F, Wang W, Jia Z K. Effects of different tillage patterns during summer fallow on soil water conservation and crop water use efficiency., 2012, 28(3): 94-100. (in Chinese)

[31] 朱文新, 孙继颖, 高聚林, 胡树平, 于晓芳, 王志刚, 于博, 朱全贵. 深松和灌水次数对春玉米耗水特性及产量的影响. 玉米科学, 2016, 24(5): 75-82.

ZhU W X, SUN J Y, GAO J L, HU S P, YU X F, WANG Z G,YU B, ZHU Q G. Effect of subsoiling and irrigation frequency on water consumption characteristics and yield of super high yield spring maize., 2016, 24(5): 75-82. (in Chinese)

Effects of Subsoiling and Irrigation Frequency on Water Saving and Yield Increasing of Winter Wheat and Summer Maize in the Huang-Huai-Hai Plain

QIANG XiaoMan1, ZHANG Kai1, MI ZhaoRong2, LIU ZhanDong1, WANG WanNing1, SUN JingSheng1

(1Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang 453002, Henan;2School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan)

【Objective】The effects of interactions between subsoiling and irrigation frequency on crop yield and water productivity of winter wheat and summer maize were investigated to optimize tillage practices in the Huang-Huai-Hai Plain.【Method】Considering different tillage methods and irrigation times, a field experiment was carried out with five treatments, including autumn subsoiling with two irrigation applications during winter wheat growth period (QS-2), autumn subsoiling with three irrigations applications during winter wheat growth period (QS-3), summer subsoiling with two irrigations applications during winter wheat growth period (XS-2), summer subsoiling with three irrigations applications during winter wheat growth period (XS-3) and control (CK). The effects of subsoiling and irrigation times on soil physical properties, plant growth and development, yield, total output, and water productivity of winter wheat and summer maize were investigated. 【Result】Subsoiling and irrigation times had significant impacts on soil bulk density, soil compaction, soil water storage, total output and water productivity. After subsoiling, the bulk density decreased significantly in topsoil 40 cm at the first year and in topsoil 20 cm at the second year under all QS-2, XS-2 and XS-3 treatments, compared with CK treatment. The decline of soil compaction was remarkable in the first year, but inapparent in the second year. After autumn subsoiling, the average soil water storage of QS-2 treatment increased by 18.14% compared with CK, and the QS-3 treatment was the second. While, in the second year after summer subsoiling, the XS-2 and XS-3 treatments were significantly higher than CK by 24.7% and 25.6%, respectively. Compared with CK treatment, aboveground biomass of winter wheat increased by 19.29% for QS-2 and 27.06% for QS-3 treatment, respectively, for the first year, while there was slight increase for the second year. This indicated that the improvement of winter wheat growth and development by autumn subsoiling was pronounced in the first year but weak in the second year. However, the leaf area index and aboveground biomass of XS-2 and XS-3 treatments were increased significantly, and this demonstrated that summer subsoiling could improve the winter wheat growth and development in the second year. The total output and water productivity of winter wheat and summer maize rotation for QS-2 treatment were improved by 27.21% and 23.51% in the first year, respectively, and 19.54% and 18.84% in the second year, respectively, meanwhile, there were significant improvement for XS-2 and XS-3 treatment in the second year. The increase of total output and water productivity were 18.50% and 17.65% for XS-2, respectively, and 19.57% and 15.35% for XS-3 treatment, respectively.【Conclusion】It was concluded that autumn subsoiling before winter wheat seeding could facilitate the reduction of soil bulk density and compaction, increase of soil storage capacity, and improvement of total output and water productivity of winter wheat and summer maize rotation in the Huang-Huai-Hai Plain. It was suggestion that the appropriate tillage practice in the Huang-Huai-Hai Plain was autumn subsoiling with two irrigation applications during winter wheat growth stage.

subsoiling; irrigation frequency; crop yield; water productivity; water saving and yield increasing effects; winter wheat; summer maize

10.3864/j.issn.0578-1752.2019.03.009

2017-07-03;

2018-08-21

国家公益性行业(农业)科技专项(201503117)、国家自然科学基金(31700368)、中国农业科学院基本科研业务费专项(FIRI 2016-08)

强小嫚,E-mail:xiaomanqiang@126.com。通信作者孙景生,E-mail:jshsun623@163.com

(责任编辑 李云霞)

猜你喜欢

耕作夏玉米冬小麦
2022年山西省冬小麦春季田间管理意见
基于数字孪生的农业耕作监控系统
有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响
冬小麦田N2O通量研究
保护性耕作试验监测数据分析
冬小麦的秘密
腐植酸:盯住东北三省5650 万亩黑土地保护性耕作发力
耕作与施肥方式对油菜产量和养分吸收利用的影响
不误农时打好冬小麦春管“第一仗”
巴西2020—2021年度夏玉米产量预计减少17.7%