基于MaxEnt模型预测四川省松材线虫的潜在适生区
2019-02-15魏淑婷李涛林玉成
魏淑婷, 李涛, 林玉成*
(1.四川大学生命科学学院,成都610065; 2. 四川省森林病虫防治检疫总站,成都610081)
为了有效评估四川省松材线虫病的危害程度及现状,基于2009—2018年四川省林业有害生物普查数据中已记录的松材线虫病及其媒介昆虫——松墨天牛的分布位点数据和相关环境变量资料,采用MaxEnt模型及ArcGIS对四川省松材线虫的潜在适生区进行模拟预测,并阐明可能引起该病害发生的环境影响因子,以期引起林业管理部门的重视,为研究有效的检疫防控方法提供理论参考,为制定科学的防治对策提供新思路。
1 数据来源
1.1 松材线虫病分布点数据
通过“四川省林业有害生物普查平台http://sc.30120.org/pc/surveyweb/login.html”(以下简称“省林害普查平台”)、国家林业和草原局(原国家林业局)官网发布的“国家林业局2018年第1号公告”(国家林业局,2018)获得松材线虫病在四川省的分布点,利用Google Earth获取部分分布点遗漏的经纬度,将物种名、分布点的经纬度录入Excel,共得到有效数据208条(图1),根据MaxEnt模型的格式要求,将分布点数据以“*.CSV”格式文件储存。
1.2 松墨天牛的分布点数据
通过“省林害普查平台”获取松墨天牛在四川省分布点的经纬度数据,共得到有效数据803条,以“*.TXT”格式文件储存;打开ArcGIS加载此文件,经过数据转换处理,得到松墨天牛在四川省的空间分布图层(图2),将其作为分析松材线虫潜在适生区的自然传播媒介因素。
1.3 环境变量数据
研究发现,松材线虫病的发生与温度、土壤水分有密切关系(Mamiya & Enda,1972)。本研究所用的当前环境变量(分辨率为1 km)(表1)来源于WORLDCLIM网站(www.worldclim.org)。
将环境变量图层导入ArcGIS,利用裁剪工具从全球数据中截取研究区所在的矩形区域内的数据,供进一步处理和分析;利用投影工具对环境变量进行坐标系变换,统一为WGS_1984_UTM_Zone_48N;利用重采样工具将环境变量子图层栅格大小统一定为1 000 m×1 000 m;以四川省界图层为模板,截取相应区域内的环境变量图层,统一边界;利用栅格转ASCⅡ工具将处理后的环境变量图层转化为“*.ASC”格式文件储存。
图1 2009—2018年四川省松材线虫分布记录点
Fig. 1 Records ofBursaphelenchusxylophilusin Sichuan province from 2009 to 2018
图2 2009—2018年四川省松墨天牛分布记录点Fig. 2 Records of Monochamus alternatus in Sichuan province from 2009 to 2018
编码Code变量Variablebio-1年均温bio-2平均日较差bio-3等温性bio-4温度季节性变异系数bio-5最暖月最高温bio-6最冷月最低温bio-7年温差bio-8最湿季均温bio-9最干季均温bio-10最暖季均温bio-11最冷季均温bio-12年降水量bio-13最湿月降水量bio-14最干月降水量bio-15季节性降水变异系数bio-16最湿季降水量bio-17最干季降水量bio-18最暖季降水量bio-19最冷季降水量
1.4 海拔变量数据
在地理空间数据云(http://www.gscloud.cn/)下载分辨率为1.0 km变量(数字高程模型),在ArcGIS中经提取、坐标转换、重采样、统一边界等操作,得到研究区海拔分布图层。
1.5 基础地理数据
从国家基础地理数据库(http://nfgis.nsdi.gov.cn)中下载的1∶400万中国矢量地图中提取出四川省作为分析底图。
2 研究方法
2.1 环境变量数据预处理
为避免模型过度拟合、提高模型模拟精度,分析19个环境变量之间的相关性,去掉高度相关但对MaxEnt模型预测结果贡献不大的变量(Li,2015)。利用19个环境变量和松材线虫的地理分布数据初建模型,用刀切法(Jackknife)检验各自环境变量对松材线虫潜在适生区的预测贡献;利用ArcGIS中的波段集统计(band collection statistics)工具,对19个环境变量进行相关性检验分析。在|相关系数|>0.8的2个环境变量中剔除贡献较小的变量(Lemkeetal.,2011;Yangetal.,2013)。
2.2 MaxEnt模型的应用操作与评估
2.2.1模型应用操作将松材线虫病分布点数据(“*·CSV”格式文件)和7个变量(“*·ASC”格式文件)分别导入MaxEnt模型中的Sample和Environmental layer模块,模型训练方法设定为auto features,选中create response curves、make picture of predictions、do jackknife to measure variable importance选项,output format设为logistics,output file type设为bil;参照Phillips等(2006)的参数选择,随机选取75%分布点数据作为训练集建立模型,其余25%的数据为测试集来验证结果;Replicated run type设为Bootstrap;模型重复运算15次,以确保模型预测结果的稳定性,其他参数值为模型默认值。
2.2.2模型评估采用ROC(receiver operating characteristic)曲线分析法对风险预测结果进行精度评价(Lietal.,2009)。ROC曲线又称感受性曲线,以真阳性率为纵坐标,假阳性率为横坐标绘制而成(王运生等,2007)。ROC曲线与横坐标围成的面积值即为AUC值,取值范围为[0,1],值越大表示与随机分布相距越远,变量与预测的物种地理分布模型之间相关性越大,即模型预测精度越高(Swets,1988;王茹琳等,2017)。常以AUC值评价模型的精度,具体评价标准见表2。
表2 AUC值评价标准Table 2 The evaluation criterion of AUC value
2.2.3变量贡献通过MaxEnt自身提供的模块,即刀切法测定不同环境变量对松材线虫潜在适生区预测的贡献。该方法分别计算“仅此变量”“除此变量”和“所有变量”模拟时的训练得分情况,判定标准为:“仅此变量”时得分较高,说明该因子具有较高的预测能力,对物种分布贡献较大;“除此变量”时得分降低较多时,说明该变量具有较多的独特信息,对物种分布较为重要(王茹琳等,2017)。
2.3 松材线虫适生等级分区
将MaxEnt模型输出的Bursaphelenchus_xylophilus_avg.bil文件加载到ArcGIS中,其模拟输出的数值为0~1,值越接近1表示物种越可能存在。采用最大约登指数(Jiménez-Valverde & Lobo,2007)作为阈值对松材线虫在四川省潜在适生分布区进行重新分类,得到3个等级区:0~0.032 4为非适生区,0.032 4~0.237 3为次适生区,0.237 3~1.000 0为最佳适生区。
3 结果与分析
3.1 关键环境变量数据
刀切法检验结果显示(图3),对松材线虫分布贡献较大的环境变量有:最干季均温(bio-9)、最冷季均温(bio-11)、季节性降水变异系数(bio-15)、最湿季降水量(bio-16)、最冷季降水量(bio-19)、最冷月最低温(bio-6)、平均日较差(bio-2)等;19个环境变量相关性检验结果如表3所示。据二者结果,最终筛选出的6个关键环境变量为:最冷月最低温(bio-6)、年温差(bio-7)、最干季均温(bio-9)、年降水量(bio-12)、季节性降水变异系数(bio-15)、最干季降水量(bio-17)。
结合海拔和关键环境变量,共7个变量用于本研究最终模型的构建、计算和分析。
3.2 MaxEnt模型预测能力的验证
ROC曲线图表明(图4):模型分析所得平均测试AUC值为0.960,依据AUC值评价标准,本次模型预测的准确性达到“极好”的标准,即MaxEnt模型对松材线虫在四川省潜在适生区的模拟预测结果可靠。
3.3 松材线虫在四川省的潜在适生区
在MaxEnt模型预测结果的基础上,结合松墨天牛的空间分布,按照最佳适生区、次适生区和非适生区3个等级划分,得到基于MaxEnt模型和传播媒介分布的松材线虫在四川省的潜在适生区(图5)。由该图可知:松材线虫在四川省当代环境条件下的最佳适生区主要分布在宜宾、广安、达州、自贡、乐山和眉山的交汇处以及凉山彝族自治州的中部地区;次适生区主要分布在内江、资阳、遂宁、泸州、巴中、广元、绵阳、德阳、成都、雅安、攀枝花及凉山彝族自治州的部分地区。总体来看,松材线虫的适生区主要分布在四川省的东部以及中部部分地区,总面积为125 275 km2,占四川省总面积的25.81%,其中,最佳适生区面积为36 541 km2,次适生区面积为88 734 km2,分别占适生区总面积的29.17%和70.83%。
图3 刀切法检验的环境变量Fig.3 Result of the Jackknife test on environmental variables
环境变量编码见表1; 下同
Codes of environmental variables see table 1; the same below
图4 MaxEnt模型预测结果的ROC曲线Fig.4 ROC curve of predict results of MaxEnt model
3.4 松材线虫地理分布与环境变量的关系
利用刀切法检测7个变量对松材线虫潜在适生区贡献大小结果见图6。最干季均温(bio-9)和季节性降水变异系数(bio-15)是影响松材线虫适生区分布的关键变量,二者训练增益值均超过1.4;其次分别为最冷月最低温(bio-6)、海拔、年温差(bio-7)和年降水量(bio-12),训练增益值均为1.0~1.4,是较为重要的变量;最干季降水(bio-17)的贡献不明显。
由图7可知,松材线虫适生的最干季均温适值范围在1.5~8.0 ℃,最适值为6.4 ℃ (图7:A);季节性降水变异系数适值范围在22.5%~34.0%,最适值为34.0% (图7:B);最冷月最低温范围在0.4~2.5 ℃,最适值为1.9 ℃ (图7:C);适生海拔范围在250~5 500 m,最适值为450 m (图7:D);年温差的适值范围在5.9~9.1 ℃,最适值为5.9 ℃(图7:E);年降水量的适值范围在64~135 mm,最适值为68 mm (图7:F)。
4 讨论
本研究预测结果表明,松材线虫在四川省的适生区主要分布在东部及中部部分地区,这与于治军等(2018)的研究结果一致。在松材线虫的适生区,且已发生严重该病害的地区,如广安市邻水县、达州市通川区、自贡市富顺县、宜宾市宜宾县和翠屏区等,可采用理化和生防等方法,结合当地实际情况,制定出科学合理、切实有效的措施以控制松材线虫,并及时清除侵染病害的疫木,防止向其他地区扩散蔓延;对于潜在适生但还未发生该病害的地区,如资阳市、内江市和遂宁市等,必须建立完善的检查机制,全面监测、及时发现、及早消除(黄麟等,2009);对于非适生区,在保持警惕的同时,可通过选育对松材线虫抵抗力较强的松树品种和改善单一的松林结构等方法加强松树自身对该虫的抗性,以减少被侵染的概率。
图5 基于MaxEnt模型和媒介昆虫的松材线虫在四川省的潜在适生区
Fig.5 Potential distribution ofBursaphelenchusxylophilusin Sichuan province based on MaxEnt model and vector insect
图6 环境变量重要性刀切法检验Fig.6 Results of the Jackknife test of environment variable importance
松墨天牛成虫是松材线虫的主要自然传播媒介,研究表明其体内平均携线虫量约18 000条(Mamiya,1983),最多可达289 000条(Linit,1988),主要通过补充营养将感病松树体内的松材线虫传递到健康松树,使之染病(杨希,2009)。杨宝君(1995)研究认为,媒介天牛的自然传播距离、方向、范围、携虫能力及在林地中的分布代表了松材线虫的自然扩散规律,这与本文基于MaxEnt模型和自然传播媒介的分析结果一致,即松材线虫在四川省的潜在适生区与松墨天牛的分布区基本吻合。基于此,对有松墨天牛分布但暂无松材线虫病害发生的地区,如凉山彝族自治州的西部、东部,甘孜藏族自治州的东部,阿坝藏族羌族自治州的南部等,应做好监测工作,防止松材线虫通过松墨天牛传入扩散,引发松材线虫病。
图7 预测分布值与各环境变量的响应曲线
Fig. 7 Response curves between prediction value and environmental variables
A、B、C、E中的X值均为实际值的10倍, 在分析时以实际值为准
X value equals to 10 times of actual value in A, B, C, and E, actual value shall prevail in analysis
基于刀切法检验结果,影响松材线虫发生的主要变量为最干季均温、季节性降水变异系数、最冷月最低温、海拔、年温差和年降水量等。在四川省发生松材线虫病的树种主要是喜阳耐干旱瘠薄的马尾松Pinusmassoniana和云南松Pinusyunnanensis,过多的降水和过低的温度都会使其长势衰弱(张田,2010),抵抗力下降,一旦松材线虫传入,易被侵染,发生病害;孔维娜等(2006)研究发现,湿度影响松墨天牛的羽化率,即湿度越高,羽化率越大,推测松墨天牛数量的增加会在一定程度上加大对松材线虫的自然传播概率;刘会香等(2012)认为400 m以下的低海拔地区为松材线虫入侵和定殖的高风险区,与本研究所得出的松材线虫最适海拔450 m的结果基本一致。
松材线虫病的发生是多重因素互作的结果,除了本研究中提到环境、地形、传播媒介等因子外,还有其他因子,如土壤、树种、林木类型、人为干扰等。本文预测的适生区主要指现今环境和媒介因子条件下适于松材线虫发生的地区。限于收集的数据和资料,本研究未考虑其他影响因子。
致谢:本研究得到四川省森林病虫防治检疫总站大力支持,经其同意并授权使用四川省林业有害生物普查平台的有关松材线虫病的调查数据。所有参与四川省林业有害生物普查工作的各市(州)县的单位、组织和个人,在此一并致谢。