APP下载

冷鲜鸡冷藏保存过程中菌群结构变化分析

2019-01-24桂国弘朱江群朱建芬肖英平

浙江农业学报 2019年1期
关键词:杆菌属鸡肉冷藏

桂国弘,杨 华,朱江群,朱建芬,肖英平,徐 娥,*

(1.贵州大学 动物科学学院,贵州 贵阳 550025; 2.浙江省农业科学院 农产品质量标准研究所,浙江 杭州 310021; 3.余杭区余杭街道农业公共服务中心,浙江 杭州 311121; 4.余杭区塘栖镇农业公共服务中心,浙江 杭州 311109)

冷鲜鸡是指经检疫检验后屠宰的鸡胴体,迅速冷却使其温度至0~4 ℃,并保持在0~4 ℃温度下加工、流通和零售的鲜鸡肉[1]。我国是肉类的生产和消费大国,冷鲜鸡由于营养价值高、口感好等特点,越来越得到市场的认可,成为鸡肉消费的趋势[2]。但冷鲜鸡在屠宰加工过程中易受到微生物的污染,污染的微生物在低温冷藏条件下仍可利用鸡肉中丰富的营养物质生长繁殖[3],既影响食品安全,也导致冷鲜鸡肉产品货架期缩短。目前对冷鲜鸡的保质期暂无明确的规定,同时对于冷鲜鸡菌群结构的变化也研究较少。本研究从冷鲜鸡冷藏保存过程中反映其腐败变质的参数和微生物结构变化角度出发,探究冷鲜鸡在冷藏期间鸡肉中挥发性盐基氮含量、菌落总数、大肠埃希菌总数和菌群结构的变化规律,为制定冷鲜鸡的保质期标准提供参考,也为冷鲜鸡污染微生物控制技术的开发奠定理论基础。

1 材料与方法

1.1 材料与设备

25只冷鲜鸡样品采自华东地区一家禽定点屠宰场,放入无菌袋中,置于4 ℃保藏。

无菌袋购于青岛海博生物技术有限公司;缓冲蛋白胨水培养基、平板计数琼脂培养基和结晶紫中性红胆盐-4-甲基伞形酮-β-D-葡萄糖苷琼脂(VRBA-MUG)购自杭州微生物试剂有限公司;细菌基因组DNA提取试剂盒购自美国Zymo Research公司。

Eppendorf 5427 R台式高速离心机,德国Eppendorf公司;SW-CF-IF 超净工作台,苏州安泰空气技术有限公司。

1.2 样品制备

冷鲜鸡在4 ℃保藏第0、1、3、5、7 天时,各取5只在无菌条件下对半分开,其中一部分分割鸡肉,用于挥发性盐基氮测定;另一部分放置于无菌袋中,加入生理盐水冲洗(m/V=1∶1),并用手握住无菌袋猛烈振荡1 min,取出鸡肉样品,菌液用于微生物平板计数并进行菌群结构分析[4]。

1.3 挥发性盐基氮测定

挥发性盐基氮(total volatile basic nitrogen,TVBN)按照《GB 2707—2016 食品安全国家标准 鲜(冻)畜、禽产品》方法测定。

1.4 菌落总数和大肠杆菌数测定

菌落总数、大肠埃希菌数分别按照《GB 4789.2—2016食品微生物学检测 菌落总数》《GB 4789.38—2012食品微生物学检测 大肠埃希氏菌计数》方法测定。

1.5 微生物基因组DNA提取和16S rRNA基因PCR扩增

使用细菌基因组DNA提取试剂盒按照试剂盒使用说明提取细菌DNA。以提取的DNA为模板,使用引物338F(5′-ACTCCTACGGGAGGCAGCA-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)对细菌16S rRNA基因V3~V4区进行PCR扩增。

1.6 高通量测序

测序由北京诺禾致源生物信息科技有限公司完成。采用Illumina Hiseq 2500高通量测序平台对冷鲜鸡表面细菌16S rRNA基因的V3~V4区进行测序。根据条码序列匹配双端测序序列与样品,对条码序列及引物序列进行切除。使用FLASH 1.2.7软件将双端序列进行融合,得到未加工序列。使用QIIME V1.7.0软件将序列进行质控和过滤后,获得优质序列[5-6],之后通过UCHIME算法将得到的优质序列与参考数据库进行比对,发现嵌合体序列,去除后获得有效序列[7-8]。使用Uparse 7.0软件依据相似性≥97%将质控后的有效序列聚类成为操作分类单元(operational taxonomic unit,OUT)[9]。采用QIIME默认参数计算各样品的α多样性指数和物种分布。为了比较不同冷藏保存时间的菌群结构差异,使用R软件(Version 2.15.3)软件包对样品之间的菌群结构相似度进行非度量多维尺度(nonmetric multidimensional scaling,NMDS)分析。

1.7 统计分析

将菌落计数结果计算成每克样品中细菌的含菌量,采用SPSS 18.0软件进行单因素方差分析(ANOVA),P<0.05为差异显著。

2 结果与分析

2.1 冷鲜鸡挥发性盐基氮、菌落总数、大肠埃希菌数变化情况

冷鲜鸡的挥发性盐基氮(total volatile basic nitrogen,TVBN)含量随着保存时间的延长而逐渐增加(表1)。在冷藏条件下保存第1、3 天,其含量分别为7.27、10.80 mg·(100 g)-1,与第0天的新鲜样品相比,无显著差异(P>0.05)。保存第5、7 天时,TVBN含量分别为14.96、29.84 mg·(100 g)-1,均显著高于新鲜鸡肉样品浓度(P<0.05)。根据《GB 2707—2016食品安全国家标准 鲜(冻)畜、禽产品》要求,冷鲜鸡肉挥发性盐基氮不得超过15 mg·(100 g)-1,因此冷鲜鸡冷藏5 d后,其TVBN存在超标的风险。

随着保存天数的增加,冷鲜鸡肉中的菌落总数与大肠埃希菌数量不断增加(表1)。鸡肉中菌落总数由第0天的4.46×106CFU·g-1增加至第7天的1.87×108CFU·g-1,自第3天起菌落总数开始显著增加(P<0.05)。大肠埃希菌总数在鸡肉保存第5 天和第7 天时显著高于前3天(P<0.05)。

冷鲜鸡肉样品经过了屠宰、脱毛、净膛、清洗等加工过程,胴体表面易被微生物污染。污染的微生物以鸡肉为基质进行生长繁殖,因此菌落总数、大肠埃希菌数量在保存过程中不断增加。同时微生物生长繁殖的过程伴随着鸡肉的腐败变质[10-12],因此TVBN含量相应地持续升高。

2.2 冷鲜鸡菌群高通量测序

2.2.1 菌群丰富度及多样性

表1冷鲜鸡冷藏保存过程中的挥发性盐基氮、菌落总数和大肠埃希菌数变化情况

Table1TVBN contents, bacterial colonies and totalE.colicounts of chilled chicken in different days of cold storage

组别Group挥发性盐基氮含量TVBN contents菌落总数Total number of bacterial colonies大肠埃希菌数Total number of E.coliD05.51±1.56 c(4.46±1.28)×106 c(1.48±1.15)×106 bD17.27±3.05 c(6.81±3.20)×106 c(1.67±0.86)×106 bD310.80±2.13 c(5.15±3.12)×107 b(1.66±1.60)×106 bD514.96±1.39 b(1.32±0.99)×108 a(5.10±1.43)×106 aD729.84±8.56 a(1.87±1.03)×108 a(5.78±1.64)×106 a

D0,D1,D3,D5,D7分别为在4 ℃保藏第0,1,3,5,7天的样品组。同列数据后没有相同字母表示处理间差异显著(P<0.05)。下同。

D0,D1,D3,D5,D7 represented the groups of storage for 0,1,3,5 and 7 days at 4℃. Data without the same letters within the same column indicated significant difference atP<0.05. The same as below.

经过质控、过滤等处理后,在25个样品中获得有效序列951 905条,其中各组样品的有效序列为36 826~39 329条(表2),样品间的有效序列差异较小。所获得的有效序列根据97%相似性水平进行OTU数量分析,在保存第7天的样品组OTU数量显著降低(P<0.05);同样地,反映样品微生物丰度指数Chao 1和ACE指数也显著降低(P<0.05)。各组样品的覆盖度指数(Good’s coverage)均在0.995~1.000,并且其稀释曲线已经趋于平稳(图略),表明测序已趋于饱和,测序深度已基本覆盖样品中所有物种,测序结果能反应鸡肉微生物菌群多样性组成。

通过Venn图(图1)可知,在冷鲜鸡冷藏保存的5个时间点中,共有352个OTU是共有的。但在冷鲜鸡4℃保藏第7 天时,其特有的OTU数量为110个,显著多于冷藏保存5 d内各个时间点特有的OTU数量。由此看出,菌群数量随着冷藏保存时间的增加其独有OTU数量也增多,表明其菌群多样性随着冷藏保存时间的增加而增多。

2.2.2冷鲜鸡冷藏保存过程中菌群结构变化

在门水平上,变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes)为优势菌门(图2),其相对丰度在各个实验组都超过99%。

在不同的冷藏保存期间4种优势菌门的相对丰度见图3。变形菌门的相对丰度随着冷蔵天数的增加而增加,冷藏第7天时变形菌门菌群含量显著高于冷藏第0、1、3、5 天时(P<0.05),相对丰度由38.13%~46.96%增加到64.50%。厚壁菌门随着冷藏天数的增加相对丰度减少,在冷藏保存第5天和第7天,其相对丰度分别为27.29%和18.80%,均显著低于第0 天的50.09%(P<0.05)。放线菌门和拟杆菌门的相对丰度在不同时间点均无显著差异(P>0.05)。这与我们前期的研究结果相一致[4]。

表2各组样品测序概况

Table2Overview of sequencing results of each group

组别Group序列数量SequencesOTU数量OTUs香农指数Shannon index辛普森指数Simpson index丰度指数Chao1 index丰度指数ACE index覆盖度指数Goods coverageD038 962±1 254 654±22 a5.838±0.275 a0.950±0.013650.267±24.747 a672.075±28.511 a0.996±0.0005D139 329±1 638710±24 a5.669±0.290 a0.931±0.018722.948±30.914 a732.598±24.057 a0.995±0.0002D336 850±1 834579±21 a5.499±0.218 a0.938±0.018577.775±20.169 a593.157±16.150 a0.996±0.0002D538 414±2 719607±32 a5.344±0.185 ab0.924±0.012692.252±60.205 a684.271±45.943 a0.995±0.0007D736 826±1 245284±43 b4.499±0.414 b0.871±0.053277.236±41.693 b282.733±39.182 b0.998±0.0002

图1 不同冷藏保存时间冷鲜鸡表面菌群OTU Venn图Fig.1 Venn diagram of OTUs in chilled chickens of different storage days

D01~D05,D31~D35,D51~D55,D71~D75分别为在4℃保藏第0、1、3、5、7天的5个样品。D01-D05,D31-D35,D51-D55,D71-D75 represented 5 samples of storage for 0,1,3,5,7 days at 4 ℃图2 冷鲜鸡不同冷藏时间菌群在门水平上的变化Fig.2 Relative abundance of sequences at phylum level in chilled chickens of different storage days

没有相同小写字母表示差异显著(P<0.05)。The bars without the same lowercase letters showed the significant difference(P<0.05).图3 冷鲜鸡不同冷藏时间4种优势菌门的相对丰度Fig.3 Four dominant phyla in chilled chickens of different storage days

在属水平上,乳酸杆菌属(Lactobacillus)、不动杆菌属(Acinetobacter)、嗜冷杆菌属(Psychrobacter)、肠球菌属(Enterococcus)、假单胞菌属(Pseudomonas)、乳球菌属(Lactococcus)、埃希氏菌属(Escherichia)、葡萄球菌属(Staphylococcus)、芽孢杆菌属(Bacillus)、链球菌属(Streptococcus)和金黄杆菌属(Chryseobacterium)为主要的优势菌属(图4),这10种菌属的相对丰度平均约占整个菌群的52.24%。

图4 冷鲜鸡在不同冷藏保存时间10种主要菌属的相对丰度Fig.4 Relative abundance of top 10 genera in chickens of different cold storage days

不同冷藏天数的冷鲜鸡表面的菌落结构变化较大。随着冷藏天数的增加,在相对丰度大于0.1%的属中,有9个属的相对丰度显著增加(表3)。其中肉食杆菌属(Carnobacterium)、乳球菌属(Lactococcus)、巨球菌属(Macrococcus)、假单胞菌属(Pseudomonas)、嗜冷杆菌属(Psychrobacter)、希瓦氏菌属(Shewanella)是典型的肉食腐败菌[13-14]。假单胞菌属因其能适应低温环境,是冷藏肉中的优势菌也是主要的腐败菌,同时能产生氨等腐败产物[15-18]。本试验中,假单胞杆菌属在冷藏保存第7 天时相对丰度达到19.53%,成为冷藏肉的表面优势腐败菌,与已有研究结果一致[19-21]。嗜冷杆菌属、希瓦氏菌属也是冷鲜肉中的常见腐败菌,在冷藏过程中快速生长,使肉腐败变质[22-27]。在冷藏过程中,由于这些腐败菌的增殖,导致冷鲜肉的腐败,这也与TVBN含量随着冷藏时间的延长而升高相一致。乳球菌属、巨球菌属的相对丰度出现了先增加后降低的趋势,可能由于其他的菌属如假单胞菌属或嗜冷杆菌属,在冷藏环境下的大量增殖,导致乳球菌属、巨球菌属第5天后的相对丰度降低。

随着冷藏天数的增加,不动杆菌属(Acinetobacter)、拟杆菌属(Bacteroides)、布劳特氏菌属(Blautia)、肠球菌属(Enterococcus)、粪杆菌属(Faecalibacterium)等10个菌属的相对丰度显著降低(表4)。值得注意的是,拟杆菌属、布劳特氏菌属、肠球菌属、粪杆菌属、瘤胃球菌属和SMB53等是典型的肉鸡肠道内容物和粪便中的菌属[28]。该结果反映了冷鲜鸡在屠宰加工过程中鸡肉表面的污染微生物主要来源于肉鸡肠道和粪便。

2.2.3 样品的聚类与非度量多维尺度分析

冷鲜鸡表面的菌群结构在冷藏保存过程中发生一定的变化,根据各组样品间的加权UniFrac距离(图5)和基于不同保存时间样品OTU进行非度量多维尺度分析(non-metric multi-dimensional scaling, NMDS)分析(图6)。结果表明,不同保存时间的样品表现出不同的聚类趋势,特别是在冷藏保存后第7天,菌群结构有显著不同的聚类。相同天数样品菌群结构相似性较高,不同天数的样品相似性较小。

3 结论

冷鲜鸡在冷藏保存过程中,挥发性盐基氮含量逐渐升高,特别是在冷藏保存第5天后,其含量已超过国家限量标准;菌落总数、大肠埃希菌总数随着冷藏时间的延长而增多;在菌群结构组成方面,肉食杆菌属、假单胞菌属、嗜冷杆菌属、希瓦氏菌属等腐败菌的相对丰度显著增加,而拟杆菌属、布劳特氏菌属、肠球菌属、粪杆菌属、瘤胃球菌属等肉鸡自身来源的污染微生物逐渐降低。说明了冷鲜鸡肉的微生物污染起始阶段主要受肉鸡自身携带微生物的污染,而后逐渐演替成腐败菌为优势菌群,导致鸡肉的腐败变质。

表3冷鲜鸡冷藏过程中菌群相对丰度显著升高的属

Table3The genera with significantly enhanced relative abundance in chilled chicken during the increasing days of cold storage

菌属Genus不同冷藏保存天数菌群的相对丰度Relative abundance of the genus in different cold storage days/%01357P值P-value肉食杆菌属Carnobacterium0.0310.0250.2580.2351.6130.000金黄杆菌属Chryseobacterium0.7001.6143.0803.4971.2600.018乳球菌属 Lactococcus1.2963.53015.1846.6305.9130.000巨球菌属 Macrococcus1.8350.7403.8861.4861.7590.001海洋芽孢杆菌属Marinibacillus0.0000.0000.0000.0000.8880.020假单胞菌属 Pseudomonas0.1760.3470.7130.57419.5260.000嗜冷杆菌属 Psychrobacter2.3112.27816.76512.91816.8010.002希瓦氏菌属Shewanella0.0640.1200.1420.1880.9830.002需盐杆菌属Salegentibacter0.0000.0000.0000.0001.4550.041

仅选择相对丰度大于0.1%的属进行统计分析和列出显著差异的菌属。下表同。

The genera representing more than 0.1% of the total sequences were compared, and genera showing significant differences were listed. The same as below.

表4冷鲜鸡冷藏过程中菌群相对丰度显著降低的属

Table4The genera with significantly reduced relative abundance in chilled chicken during the increasing days of cold storage

菌属Genus不同冷藏保存天数菌群的相对丰度Relative abundance of the genus in different cold storage days/%01357P值P-value不动杆菌属Acinetobacter17.43827.05912.36911.8264.2930.000拟杆菌属Bacteroides1.0780.2760.0980.1200.0070.046布劳特氏菌属Blautia1.1330.5240.3160.2070.1490.044水栖菌属Enhydrobacter1.1280.7980.9660.5660.1790.006肠球菌属 Enterococcus12.1741.7211.1921.4810.7420.007埃希氏菌属 Escherichia6.9143.4431.0462.1010.3350.039Faecalibacterium1.2120.4050.2040.1650.0450.048瘤胃球菌属Ruminococcus1.4400.5380.1720.0710.0230.001SMB531.8621.9851.8231.6400.5060.006葡萄球菌Staphylococcus1.9181.0231.6980.8040.2010.000

图5 各样品菌落结构的聚类分析Fig.5 Cluster analysis of the dissimilarity of bacterial community structure among the samples

图6 各样品菌落结构的NMDS分析Fig.6 Non-metric multi-dimensional scaling (NMDS) of the dissimilarity of bacterial community structure among the samples

猜你喜欢

杆菌属鸡肉冷藏
溃疡性结肠炎患者肠道菌群分布特征分析
养猪微生物发酵床芽胞杆菌空间生态位特性
厨房料理小妙招
下半年鸡肉市场看好
天热了,吃点鸡肉吧
食物冷藏不要超过多少天
不吃鸡肉
哪些应该放冷藏?哪些应该放冷冻?哪些不用放冰箱?
冷藏保温车发展潜力被激发
再谈冷藏保温车:市场已升温