轻合金挤压成形/成性一体化的研究进展
2019-01-14王野李峰王宇王雁鹏
王野 李峰 王宇 王雁鹏
摘 要:为了充分发挥挤压工艺在高性能轻合金制备和成形两个层面上的技术特点与集成优势,轻合金挤压成形/成性一体化应运而生并逐渐成为本领域的研究热点问题之一。该类方法的技术特点在于通过对挤压模的优化设计、加载形式及坯料结构等的改变,将以往独立的细晶制备工序巧妙融入到挤压过程中,在单道次内即达到了对挤出制品“形/性”双控的实效。从研究概况的“缩影”可以看出,与常规挤压相比,在降低成形载荷、改善挤出流动均匀性、提高制品组织性能等诸多方面都体现出了其综合优势。随着相关基础科学问题的解决,藉此为高性能轻合金短流程控形及控性一体化技术的研究和应用提供科学指导。
关键词:轻合金;挤压;控形;控性;组织
DOI:10.15938/j.jhust.2019.05.001
中图分类号: TG376
文献标志码: A
文章编号: 1007-2683(2019)05-0001-06
Abstract:Extrusion processes can exert technical characteristics and integration advantages in preparing and forming lightweight high-performance magnesium alloys. The lightweight alloy extrusion integration consisting of forming and modification emerged as the times require, and has gradually become one of the hot topics in extrusion field. The technical characteristics of above processes are that the previous independent fine grain preparation processes is skillfully integrated into the extrusion processes through optimizing extrusion dies, changing loading modes and adjusting the structure of billets, etc. The actual effects of “shapes/properties” dual control of extrusion products have been achieved in a single pass. It can be seen from the microcosm of the research overviews that compared with the conventional extrusion, its comprehensive advantages are reflected in many aspects such as reducing forming load, improving the uniformity of extrusion flow, and improving the microstructure properties of the extruded products. To solve the related basic scientific problems, it provides scientific guidance for the research and application of lightweight high-performance alloy in short process and dual control of shape/performance.
Keywords:light alloys; extrusion; shape control; performance control; microstructure
0 引 言
鋁镁合金兼具多种优异的综合性能,是航空航天、轨道交通、武器装备等领域实现轻量化的理想首选,具有广阔的发展潜力及应用前景[1-3]。传统轻合金构件成形多采用铸造工艺,但铸件材质不够致密、承载能力及制品性能存在不足之处。比较而言,塑性加工法更利于轻合金构件组织和力学性能的改善。以挤压工艺为例,成形过程中变形区内因具有三向受压应力状态和可提供较大的剪切变形量而使被加工制品获得细晶组织及优异的力学性能[4-6],因此,该工艺逐渐成为铝镁等轻质合金构件主要的加工成形手段[7-9]。
我国铝镁资源储备非常丰富,但深加工技术的开发能力和高附加值制品的产出等方面与国外发达国家仍存在着明显差距,是长期困扰传统轻合金挤压技术快速发展及拓展应用的症结所在,更是轻合金高效精确塑性成形前沿研究领域所关注的关键基础科学问题之一[10]。
当前围绕轻合金挤压成形的相关研究工作主要集中在改性和成形两个不同层面上。前者是利用挤压工艺提供的剪切变形作为细晶改性手段来实施的[11-12],后者则是针对半成品或成品加工成形的技术手段[13]。发展挤压成形/成性一体化技术是促进轻合金短流程深加工潜能提升的重要途径。
1 结构设计
1.1 模具结构
模具结构是决定挤出流动行为、制品组织及力学性能的重要因素之一,因此,模腔结构的精准设计显得尤为关键。XU等[14]对不同模角挤压成形制品进行了对比研究,结果表明,芯模半角为45°时获得AZ31镁合金板材内部组织较均匀,具有较弱的基面织构,屈服强度较低,但延展性较好,相对来讲,其综合性能仍为最佳。
图5 镁合金转模挤压的晶粒尺寸对比
Fig.5 The comparison of grain size for magnesium alloy
by extrusion through rotating container
此外,YU等[42]对反挤压凹模施加了旋转尝试,对挤压成形管状制品微观组织及性能的研究结果表明:转速与显微硬度呈反比趋势变化;当温度和应变速率不变时,晶粒尺寸随转速的增加而变大,而动态再结晶细化和晶粒生长呈动态竞争关系。
2.3 侧向加载
芯模是决定挤出制品形状的关键结构,研究者们突破了传统的芯模设计理念,将其设计成可动式结构,随着挤压过程的进行,可获得截面连续变化的挤出制品。
LIN等[43]设计了一种可以实现侧向柔性加载的变截面挤压成形工艺,即通过分别调控固定模和活动模获得沿长度方向具有变化截面的棒材或管材,原理如图6所示,挤压过程中关键是准确动态地调整所围成形模孔的几何形状及尺寸。同时基于等效体积理论,提出了一种新的动模调控模型,并给出了该模型的数值计算方法和程序结果表明,该运动控制模型具有足够的精度和精度,可用于设计及参数计算。
胡水平等[44]开发出了一种与电、液、计算机技术融为一体的连续变断面挤压法,原理如图7所示。以工业纯铝为研究对象,通过调节主液压缸和侧向伺服液压系统的参数,可以获得截面尺寸呈连续规律变化的挤出构件。无须在挤压过程中停机更换模具,使生产效率大幅度提高。随后对连续变断面挤压工艺进行了实验,研究结果表明[45]:沿长度方向上制品组织很不均匀,晶粒尺寸由试样外层到中部逐渐变大,需通过后续热处理进行调控。
2.4 交替加载
对挤压凸模进行离散设计并交互下载作用也能达到节省载荷和细化晶粒的效果。基于这种思想,LI等[46]提出了交替挤压法,原理如图8所示。该工艺采用分体式凸模代替整体式结构,交替向下施加载荷。以两半分体凸模结构为例,加载模式可分为递进式和交互式。
LIU等[47]将常规挤压法与交替挤压法进行了对比研究,结果表明,交替挤压过程中除挤压模口周围外,交替下行加载过程中不同分体冲头之间交界面处可产生了持续剧烈的附加剪切变形作用,促进了低塑性镁合金内部组织的深度细化,利于挤出制品综合力学性能的改善及质量的提高。
3 结论及展望
1)轻合金挤压成形/成性一体化是高效精确塑性成形前沿研究领域所关注的重要基础科学问题之一。为解决本领域长期存在的生产效率低、形状尺寸精度和组织性能协同控制难度大等难题提供了一种新思路;
2)轻合金挤压成形/成性一体化虽具有一定的改性优势,但与大塑性变形技术有着本质区别,不能混淆。如不具备重复多次加载、获得超细晶组织等技术特征,与大塑性变形技术相比,更易于在生产实际中推广应用;
3)高效低耗地进行制品形状和性能的短流程精确调控是改善轻合金挤压件综合质量、提高生产效率及扩大适用范围的根本“良方”之一。随着使用需求的日益增高,轻合金挤压成形/成性一体化的“奇思妙想”仍在不断涌现并与时俱进地发展。
参 考 文 献:
[1] 丁文江, 吴玉娟, 彭立明. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8):37.
[2] 王凯锋, 冯义成, 张靖, 等. 等温处理对Mg-3Al-2Ca- 2Nd组织和性能的影响[J]. 哈尔滨理工大学学报, 2018,23(1):35.
[3] 冯义成,王琴,杨建辉,等. Ca 对 Mg-6Al-1Nd 合金显微组织 和性能的影响[J]. 哈尔滨理工大学学报, 2014, 19(5):10.
[4] HSIANG SU-HAI, LIN YI-WEI, LAI JHONG-WEI. Optimization of Hot Extrusion Process for AZ61 Magnesium Alloy Carriers[J]. International Journal of Material Forming, 2012,5(3):259.
[5] YU Z J, HUANG Y D, QIU X, et al. Fabrication of Magnesium Alloy with High Strength and Heat-resistance by Hot Extrusionand Ageing[J]. Materials Science and Engineering: A, 2013,578:346.
[6] 陈增奎, 蒋清, 周卫卫, 等. AZ31镁合金薄壁管材挤压技术研究[J]. 精密成形工程, 2016(3):34.
[7] 董媛媛, 张存生, 赵国群, 等. 7×××系空心铝型材挤压横向焊缝的研究[J]. 精密成形工程, 2017,9(5):98.
[8] LI N, HUANG G, XIN R, et al. Effect of Initial Texture on Dynamic Recrystallization and Deformation Mechanisms in AZ31 Mg Alloy Extruded at 573K[J]. Materials Science and Engineering: A, 2013, 569:18.
[9] 李落星, 周佳, 張辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48(18):35.
[10]杨合, 李落星, 王渠东, 等. 轻合金成形领域科学技术发展研究[J]. 机械工程学报, 2010, 46(12): 31.
[11]CHEN Y J, WANG Q D, ROVEN H J, et al. Microstructure Evolution in Magnesium Alloy AZ31 During Cyclic Extrusion Compression[J]. Journal of Alloys and Compounds, 2008,462(1/2):192.
[12]STRSK JITKA, JANEEK MILO, EK JAKUB, et al. Microstructure Stability of Ultra-Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal-Channel Angular Pressing (EX-ECAP)[J]. Materials Characterization, 2014, 94:69.
[13]LI L, ZHANG H, ZHOU J, et al. Numerical and Experimental Study on the Extrusion Through a Porthole Die to Produce a Hollow Magnesium Profile with Longitudinal Weld Seams[J]. Materials and Design, 2008,29:1190.
[14]XU J, YANG T H, JIANG B, et al. Improved Mechanical Properties of Mg-3Al-1Zn Alloy Sheets by Optimizing the Extrusion Die Angles: Microstructural and Texture Evolution [J]. Journal of Alloys and Compounds, 2018, 762: 719.
[15]YANG Q S, JIANG B, HE J J, et al. Tailoring Texture and Refining Grain of Magnesium Alloy by Differential Speed Extrusion Process[J]. Materials Science and Engineering: A, 2014, 612:187.
[16]WANG Q , SONG J , JIANG B , et al. An Investigation on Microstructure, Texture and Formability of AZ31 Sheet Processed by Asymmetric Porthole Die Extrusion[J]. Materials Science and Engineering: A, 2018, 720:85.
[17]ORLOV D, RAAB G, LAMARK T T, et al. Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing[J]. Acta Materialia, 2011,59:375.
[18]ORLOV D, RALSTON K D, BIRBILIS N, et al. Enhanced Corrosion Resistance of Mg Alloy ZK60 after Processing by Integrated Extrusion and Equal Channel Angular Pressing[J]. Acta Materialia, 2011, 59(1):6176.
[19]HU H J, WANG H, ZHAI Z Y, et al. Effects of Channel Angles on Extrusion-shear for AZ31 Magnesium Alloy Modeling and Experiments[J]. The International Journal of Advanced Manufacturing Technology, 2015,76(9/12): 1621.
[20]KHODDAM S, FARHOUMAND A, HODGSON P D. Axi-symmetric Forward Spiral Extrusion, a Kinematic and Experimental Study[J]. Materials Science and Engineering: A, 2011, 528(3): 1023.
[21]SHAHBAZ M, PARDIS N, KIM J G, et al. Experimental and Finite Element Analyses of Plastic Deformation Behavior in Vortex Extrusion[J]. Materials Science and Engineering: A, 2016, 674: 472.
[22]LU L W, LIU C, ZHAO J, et al. Modification of Grain Refinement and Texture in AZ31 Mg Alloy by a New Plastic Deformation Method[J]. Journal of Alloys and Compounds, 2015,628:130.
[23]LI F, ZENG X, BIAN N. Microstructure of AZ31 Magnesium Alloy Produced by Continuous Variable Cross-section Direct Extrusion(CVCDE)[J]. Materials Letters, 2014,135:79.
[24]LI F, ZENG X, CAO G J. Investigation of Microstructure Characteristics of the CVCDEed AZ31 Magnesium Alloy[J]. Materials Science and Engineering A, 2015, 639:395.
[25]MLLER S, DENKS I, MLLER K, et al. Extrusion of Magnesium Profiles and Microstructure Characterization[C]// Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, December, 2003:254.
[26]WANG Y P, LI F, SHI W Y, et al. Dynamic Recrystallization and Metal Flow Behavior of AZ31 Magnesium Alloy Bending Products Processed by Staggered Extrusion[J]. Journal of Materials Engineering and Performance, 2019,28(6): 3551.
[27]WANG Q S, JIANG B, CHAI Y F, et al. Tailoring the Textures and Mechanical Properties of AZ31 alloy Sheets Using Asymmetric Composite Extrusion [J]. Materials Science and Engineering: A, 2016, 673: 606.
[28]PAN F S, WANG Q H, JIANG B, et al. An Effective Approach Called the Composite Extrusion to Improve the Mechanical Properties of AZ31 Magnesium Alloy Sheets [J]. Materials Science and Engineering:A,2016, 655: 339.
[29]MLLER, KLAUS B. Indirect Extrusion with Active Friction(ISA)[J]. Key Engineering Materials, 2002(233/236):323.
[30]SOCACIU T. Experimental Study Regarding Variation of Force in Inverse Extrusion Using Active Friction[J]. Procedia Technology, 2015, 19:85.
[31]MA X, BARNETT M R, KIM Y H. Forward Extrusion Through Steadily Rotating Conical Dies. Part I: Experiments[J]. International Journal of Mechanical Sciences,2004,46(3):449.
[32]MA X, BARNETT M R, KIM Y H. Forward Extrusion Through Steadily Rotating Conical Dies.Part II: Theoretical Analysis[J]. International Journal of Mechanical Sciences, 2004, 46(3):465.
[33]Kong L X, Lin L, Hodgson P D. Material Properties under Drawing and Extrusion with Cyclic Torsion[J]. Materials Science and Engineering A,2001,308(1/2):209.
[34]MACIEJEWSKI J, MRóZ Z. An Upper-bound Analysis of Axisymmetric Extrusion Assisted by Cyclic Torsion[J]. Journal of Materials Processing Technology,2008,206 (1/3):333.
[35]JAHEDI M, PAYDAR M H. Study on the Feasibility of the Torsion Extrusion(TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder[J]. Materials Science and Engineering A,2010,527(20): 5273.
[36]YASUMASA C, HUANG X, KAZUTAKA S, et al. Texture and Mechanical Properties of Mg-3Al-lZn-0.5Mn-l.5Ca Alloy Produced by Torsion Extrusion[J]. Materials Transactions, 2010, 51(5):872.
[37]CHINO Y , SASSA K , MABUCHI M. Enhancement of Tensile Ductility of Magnesium Alloy Produced by Torsion Extrusion[J]. Scripta Materialia, 2008,59(4):399.
[38]WANG J, ZHANG D, LI Y, et al. Effect of Initial Orientation on the Microstructure and Mechanical Properties of Textured AZ31 Mg Alloy During Torsion and Annealing[J]. Materials and Design, 2015, 86: 526.
[39]WANG J, YANG XY, LI Y , et al. Enhanced Ductility and Reduced Asymmetry of Mg-2Al-1Zn Alloy Plate Processed by Torsion and Annealing[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3928.
[40]LI F, CHU G N, LIU E L, et al. Investigation of Metal Extrusion Forming Through Steadily Rotating Container[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011,225(12):2927.
[41]LI F, BIAN N, XU Y C, et al. Theoretical Analysis of Extrusion Through Rotating Container: Torque and Twist Angle[J]. Computational Materials Science, 2014, 88(6): 37.
[42]YU J M, ZHANG Z M, WANG Q, et al. Rotary Extrusion as a Novel Severe Plastic Deformation Method for Cylindrical Tubes[J]. Materials Letters,2018,215:195.
[43]LIN J, XIA X, CHEN Q. An Investigation of the Variable Cross-section Extrusion Process[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1/4): 453.
[44]胡水平, 李少锋, 任学平, 等. 连续变断面挤压工艺的开发[J]. 机械工程学报, 2005,41 (12):173.
[45]胡水平, 高曉丹, 任学平, 等. 连续变断面挤压制品组织的变化规律[J]. 北京科技大学学报, 2008,30(7): 751.
[46]LI F, JIANG H W, CHEN Q, et al. New Extrusion Method for Reducing Load and Refining Grains for Magnesium Alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4):73.
[47]LIU Y, LI F, JIANG H W. Microstructural Analysis and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Alternate Extrusion (AE)[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9/12): 4293.
(编辑:温泽宇)