设计开放型数学习题培养学生的思维能力
2019-01-12段琳风
段琳风
(河北省邯郸市永年区界河店乡总校,河北 邯郸 057150)
一、运用不定型开放题,培养学生思维的深刻性
不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。
如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后,问学生:b/a是真分数,还是 假分数?因a、b都不是确定的数,所以无法确定b/a是真分数还是假分数。在学生经过紧张的思考和激烈的争 论后得出这样的结论:当b<a时,b/a为真分数;当b≥a时,b/a是假分数。这时教师进一步问:a、b可以是 任意数吗? 这样不仅使学生对真假分数的意义有了更深刻的理解,而且使学生的逻辑思维能力得到了提高。
二、运用多向型开放题,培养学生思维的广阔性
多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变 、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。
如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队 每天修多少米?
这道题从不同的角度思考,得出了不同的解法:
(一)先求出乙队20天修的,根据全长和乙队20 天修的可以求出甲队20天修的,然后求甲队每天修的。
算式是(1500-35×20)÷20
(二)先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队 每天修的。
算式是:(35×20+100)÷20
(三)可以先求出两队平均每天共修多少米,再求甲队每天修多少米。
算式是:1500÷20-35
(四)可以先求出甲队每天比乙队多修多少米,再求甲队每天修多少米。算式是:100÷20+35
(五)假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求两队每天修的,再求甲队每 天修的。算式是:(1500+100)÷20÷2
(六)假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求甲队20天修的,再求甲队每天修的。算式是:(1500+100)÷2÷20
然后引导学生比较哪种方法最简便,哪种思路最简捷。
这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不 同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。
三、运用多余型开放题,培养学生思维品质的批判性
多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析 条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养 学生思维的批判性。
如:一根绳子长25米,第一次用去8米,第二次用去12米,这根绳子比原来短了多少米?
由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目 进行认真分析,错误地列式为:25-8-12或25-(8+12)。
做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多 少米,这里25米是与解决问题无关的条件,正确的列式是:8+12。
通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非 、去伪存真的鉴别能力。
四、运用隐藏型开放题,培养学生思维的缜密性
隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及 明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性 。
如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米?
解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:8×5,正确列式应为:8× 5×2。
解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生 思维的缜密性。
五、运用缺少型开放题,培养学生思维的灵活性
缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。
如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?
按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r,那么正方形的 边长为2r,正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。
还可以这样想:把原正方形平均分成4个小正方形,每个小正方形的边长就是所剪圆的半径,设圆的半径 为r,那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14×(12 ÷4)=9.42(平方厘米)。
通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。
解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问 题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。