小学低段数学符号意识的含义及其表现形式
2019-01-11江苏省阜宁县施庄中心小学仓强基
江苏省阜宁县施庄中心小学 仓强基
在小学教育当中,小学低段数学符号意识往往是存在的,并且涉及的符号类型比较多,其存在的要求也有不一样的表现形式。这主要体现在学生对数学符号认识、读写、应用以及理解能力方面。数学符号为数学学科专用的特殊文字,其实含有比较大的概括性,是高度浓缩的一类科学语言。对小学生来说,首先接触到的数学符号为数字符号,然后是运算符号和关系符号。它是学生抽象思维学习的一个门槛。学生从具体再到抽象表达为一个比较大的跨越,是学习数学知识的一个基础,有着比较大的作用。因此,我们需要深入地研究小学低段数学符号意识的含义以及表现形式。
一、利用符号表达数量关系以及变化规律
在《数学课程标准》2011版(以下简称《标准》)内容当中,明确规定用符号表示数量关系和变化规律。<、=、> 的含义,其可以利用词语以及符号描述万以内的数大小。这能够体现《标准》对小学低段符号意识存在的基本要求。我们了解到,在小学低段数学教学过程中,基础性的内容为数的认识和运算,其含有从具体情境当中抽象得到的具体数量,充分表现具体数量和抽象数间的关系,利用符号更好地表示数量关系。比如在小学一年级学生学习《比大小》的时候,利用情境得出具体数量为3只猴子、3个桃子、4个梨以及2支香蕉。猴子和三类水果自身没有一定的可比性,更不能说3只猴子等于3个桃子,但是从具体数量当中能够抽象到数3,3,4,2后,学生就能够直观感受到数量的多少,同时利用一般性符号语言来表示数的关系,例如:3=3,3>2,3<4。另外,学生利用“+”“-”“×”“÷”来解决问题的过程中,也体现了通过符号来表现数量的变化规律和关系。例如:3+2=5,3+5=2+6,3×5=15等来体现事物之间数量关系以及变化规律。整体来说,《标准》在利用符号体现数量关系和变化规律基本要求,来体现《标准》在小学低段符号意识方面的要求。
二、应用符号进行一般性推理和运算
在《标准》内容当中,明确要求学生需要根据具体情境,表现整数四则运算的意义。例如:在小学一年级的时候,小学生对《加法》进行学习的时候,将1个气球以及3个气球合到一起,一共存在多少个气球?原来存在4支铅笔,又放进去1支铅笔,一共含有多少支铅笔?这些问题尽管存在不一样的情景,但是都抽象了一般数字符号间的加法运算,进而表现出将两个数合并为一个数的运算,其叫做加法运算。除此之外,利用推理和运算,我们可以知道4+1=1+4,进而从直观方面初步地感受交换两个加数位置,和固定不变的基本规律。但是,当学生碰到1个气球以及4支铅笔的情境时候,多数情况下学生们都不会应用加法运算。由于小学生们知道这不是同样事物数量相加,但是当完全从具体数量当中抽象为纯粹数后,就会对数字符号进行一般性的推理和运算。所以,根据具体的情境是学生对整数四则运算意义进行理解的基础,但是抽象数字符号间的一般推理和运算是充分掌握整数四则运算的基础。整体来看,《标准》当中指出对符号能够进行一般性的推理以及运算,进而也反映出《标准》在小学阶段数学符号意识方面的基本要求。
三、小学低段学生数学符号抽象意识培养
第一,需要对学生熟悉生活经验进行强调,让学生对从直观到抽象,然后从具体再到概括的一个认知过程进行反复的经历,这样就可以在情境内对相关数和数量关系数形进行概括。比如:对数字符号而言,学生在认识1~5数字的过程中,让学生反复对1~5抽象过程进行经历,进而让学生在具体情境内概括独立数的过程。比如:利用描述农家小院,有一座房子、一只小狗、一个老奶奶以及两只鹅、两个筐和两个食盘等信息,同时可以从中抽取一定数量的属性。
第二,小学教师需要更好地引导学生通过统一记号来显示抽象属性。比如:对得到的共同数量属性1,学生可以通过“一”来进行表示。但是,因为小学数学符号需要存在美观性、简洁性和通用性,所以,教师需要积极地引导学生利用同一数字“1”来显示出来。
四、小学低段数学符号识记方面的培养
识记为所有学习过程认识的基础,也是学生学习时候一项重要的认知步骤,它含有对数学符号的认识以及记忆。在培养小学低段数学符号识记方面,其主要目的是让学生对数学符号理解的识记,而不为简单的死记。在培养过程当中,首先需要强化形象方面的感知,让学生对不同类型数学符号来识别,同时详细地了解符号写法和读法。小学低段数学含有算术的符号。德国数学家曾经说过:“算术符号是一类文字化图形。”这句话更好地体现了符号形象性的数形。我们利用运算符号作为例子,比如“+”号的出现,传说买酒的人们利用线条“一”对酒桶当中酒卖了多少进行记录,然后将新酒灌到大桶的时候就会将“-”变成“+”号。在小学低段数学学习过程中,还存在别的直观记号,比如=、>、<、×、÷以及在对图形认识的时候压缩图形符号△、□、○等等。
抛去了形象识别符号外,读写规范也是数学符号识记的一个重要内容。例如在对11~20进行学习的时候,我们明白通过1和2两个数字能够组成21和12。在这个时候,也能够准确读出“一十二”和“二十一”,进而深刻地认识数位和数的组成。
其次,关注数学活动。通过操作练习来理解符号含义,进而记忆符号。对符号含义理解为符号记忆基本的一个条件。对小学低段学生而言,通常会通过开放的操作活动,让学生从具体到抽象,接着从抽象再到具体的认知过程。比如:在对3进行认识的时候,学生从情境中抽象出3,然后利用三个小木棍放置熟悉图形。在这个过程内,学生经历从词义表征→动作表征→符号表征转化过程,但是操作练习是理解符号特征的重要措施。对从具体到抽象,然后到具体操作练习格外重视为小学低段学生对符号含义进行理解的手段,也是符号意识识记的重要条件。
综上所述,我们从小学的低段数学符号意识描述定义着手,按照学生认知基本规律,围绕着小学低段数学符号意识内涵特征来分析,从利用符号来表达数量关系以及变化规律,应用符号来进行一般性推理和运算,小学低段学生培养数学符号的意识,小学低段数学符号识记培养等方面作了研究。这样将会使小学生充分认识数学符号实质,有利于学生对数学符号意识更好地发展,另外也给学生培养数学符号意识和学生抽象思维提供了一条有效途径。