APP下载

人参皂苷Rg1通过调控细胞膜受体改善记忆研究进展

2018-12-30杨三娟朱国旗

安徽中医药大学学报 2018年1期
关键词:可塑性神经递质细胞膜

杨三娟,朱国旗

(安徽中医药大学 新安医学教育部重点实验室,安徽 合肥 230038)

人口老龄化正成为中国的主要社会问题之一。2050年约1/3人口年龄将超过60岁[1]。认知下降广泛存在于老年人群中,也是目前寿命延长后一个急需解决的重大难题。尽管与年龄相关的记忆下降并不等同于阿尔茨海默病(Alzheimer’s disease,AD)中出现的破坏性的记忆力损害,但是衰老是引起AD等神经退行性疾病的首要原因。中医学认为衰老与激素的调节有关。《黄帝内经》中记载:“女子七岁,肾气盛,齿更发长。二七而天癸至……七七,任脉虚,太冲脉衰少,天癸竭,地道不通,故形坏而无子也。”记载中表明“天癸”在人体衰老过程发挥重要的作用,而古书中记载的“天癸”即是现代生物医学中的性激素。动物实验也证实,雌激素补充疗法能抗衰老或调节衰老引发的海马神经细胞损伤[2-3]。

中医学认为,肾藏精,精生髓,脑为髓海,“在下为肾,在上为脑,虚则皆虚”(《医碥·卷四》)。也就是说,肾精充盛则脑髓充盈,肾精亏虚则髓海不足。脑髓盈满,则耳目聪明,精力充沛;脑髓空虚,可出现记忆减退。补肾填精益髓为缓解记忆减退的重要方法。人参为五加科植物人参的根。《本草纲目》中记载:“人参,味甘微寒。主补五脏,安精神,定魂魄,止惊悸,除邪气,明目,开心益智。久服,轻身延年。”中国是药用人参的发源地,人参作为珍贵中药材应用历史悠久。人参皂苷类是人参中的主要有效成分,由人参的茎叶或根部提取精制而成,含有18种以上的人参单体皂苷。其中主要单体包含人参皂苷Rb1、Rb2、Rc、Rd、Rg1等。人参皂苷Rg1是人参主要活性成分之一,具有促进海马神经再生、提高神经突触可塑性、增强学习记忆力、抗衰老、抗疲劳、提高免疫力、辅助抗肿瘤、修复性功能等药理学作用。药物代谢动力学研究结果显示,人参皂苷Rg1可以通过血脑屏障,并分布在整个脑区[4]。

细胞膜受体主要由跨膜结构域及效应结构域组成。参与学习记忆的发生的细胞膜受体主要包括G蛋白偶联受体30(G protein-coupled receptor 30,GPR30)、烟碱乙酰胆碱受体(nicotinic acetylcholine receptors,nAChR)、酪氨酸激酶受体(receptor tyrosine kinases, RTKs)、γ-氨基丁酸受体(γ-aminobutyric acid receptor,GABAR)和甘氨酸受体(glycine receptor,Glycine R)等。笔者对人参皂苷Rg1保护老年小鼠学习记忆的下降及其机制进行了探索,结果表明人参皂苷Rg1连续腹腔注射30 d,能明显增强中老年小鼠海马突触可塑性,促进海马内脑源性神经营养因子(brain derived neurotrophic factor,BDNF)的表达、树突脊再生,从而改善小鼠学习记忆[5]。然而人参皂苷Rg1作用后,可能参与的细胞膜受体还不清楚。因此,现就人参皂苷Rg1改善学习记忆可能性的细胞膜受体进行综述。

1 GPR30

GPR30为一类由375个氨基酸组成的7次跨膜的G蛋白偶联受体。GPR30与配体结合时具有高亲和力、高特异性、可置换性等膜受体的特性。同时,免疫细胞化学结果也提示GPR30主要定位于细胞膜[6]。GPR30与其配体结合后通过第二信使系统发挥间接的转录调控作用,该过程更容易调控,而且更符合学习记忆及突触可塑性的调控机制。在神经系统,GPR30和多种老年性疾病的发生相关,通过激活GPR30能改善帕金森病、脑血管病[7-9]。GPR30介导多种神经功能的发挥,主要包括调节神经递质的释放和神经保护的功能[10]。超微结构进一步显示GPR30定位于海马的树突脊和轴突末端[6],而且报道直接指出,GPR30能介导雌二醇调节海马结构可塑性的功能[11]。人参皂苷Rg1具有类雌激素特性,激活雌激素受体而发挥神经保护或增强记忆的功能[12-14]。LI等[15]研究指出,中药通络救脑方(由栀子和三七组成)及其活性成分人参皂苷Rg1通过非经典雌激素受体发挥对AD的保护,而此处的非经典雌激素受体和GPR30有重要关联。CHEN等[13]研究指出人参皂苷Rg1对Aβ25-35诱导的PC12死亡是通过胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)受体和雌激素受体关联作用的,这与GPR30的作用极为相似。

2 乙酰胆碱受体(acetylcholine receptors,AChR)

乙酰胆碱(acetylcholine,ACh)是脑内非常经典的神经递质之一,其在学习记忆中起着重要的作用。ACh主要通过与突触后膜上的两大受体结合发挥作用,AChR可分为毒蕈碱型乙酰胆碱受体(muscarinic acetylcholine receptors,mAChR)和nAChR,mAChR为G蛋白偶联受体家族,而nAChR属于配体门控离子通道超家族。nAChR有神经保护作用,特异性烟碱受体激动剂使α7和α4β2 nAChR亚型激动,可发挥神经保护作用[16]。α7和α4β2在改善认知能力方面也有重要作用[17-18]。人参皂苷Rg1已被证实可以改善慢性氧化性损伤,可能的机制和提高啮齿动物脑中胆碱乙酰转移酶(choline acetyltransferase,ChAT)的水平有关[19]。而ChAT是Ach合成的关键酶,说明人参皂苷Rg1可促进脑内Ach的合成。JIN等[20]报道指出人参皂苷Rg1能改善脂多糖诱导的认识损伤,而作用的主要靶点即为α7 nAChR。CHOI等[21]指出nAChR是人参皂苷类化合物作用神经细胞的重要靶点,也间接指出nAChR作为人参皂苷Rg1对学习记忆的保护的靶点之一。

3 RTKs

酪氨酸激酶受体B(tyrosine kinase receptor B,TrkB)广泛存在于中枢神经系统,是BDNF的功能性受体。TrkB可与BDNF特异性结合,参与神经细胞的生存、生长、分化过程。BDNF-TrkB通路是学习记忆保护重要的靶点[22-23]。在AD轻度认知障碍患者的海马和皮质中,BDNF mRNA水平和蛋白质含量均降低[24]。人参皂苷Rg1可以通过上调突触可塑性相关蛋白p-TrkB和BDNF,恢复长时程增强(long-time potentiation, LTP),改善AD小鼠的记忆[25]。WAN等[26]研究指出,人参皂苷通过促进BDNF-TrkB改善慢性脑缺血引起的记忆下降。KEZHU等[27]报道了人参皂苷Rg1对慢性束缚应激诱导的记忆损伤是由BDNF-TrkB部分介导的。笔者前期研究也发现,人参皂苷Rg1上调突触可塑性相关蛋白p-TrkB和BDNF的表达,恢复弱θ节律波(theta-burst stimulation,TBS)诱导的LTP,改善衰老小鼠的学习记忆[5]。因此,包含TrkB在内的RTKs很可能是Rg1改善衰老记忆减退的重要靶点。

4 GABAR

GABAα是配体门控离子通道超家族成员之一,由8个不同的亚基(α,β,γ,δ,θ,ε,ρ和π)组成。GABA能神经传递在学习和记忆过程中发挥重要作用[28-30]。GABAα受体可被用作治疗认知障碍药物的作用靶点。星形胶质细胞可产生和释放GABA以影响神经细胞信号[31]。人参皂苷Rg1通过降低星形胶质细胞替代基因1(astrocyte elevated gene-1,Aeg-1)的表达水平来降低星形胶质细胞的活化,从而提高认知功能[32]。星形胶质细胞活化的减少可能使得GABA的产生和释放减少,从而改善学习记忆。BAE等[33]指出人参皂苷的代谢物化合物K能促进GABA自主的释放,激活GABAR参与学习记忆的调控。

5 Glycine R

甘氨酸(Glycine)和GABAα同属于配体门控离子通道超家族成员。Glycine被认为是除了GABA以外的最重要的抑制性神经递质。Glycine广泛分布在中枢神经系统中,在神经信号的传递过程中起着重要的基础作用,还参与各种生理和病理反应[34]。Glycine作为神经递质有着双重作用[35]:低浓度时,它是N-甲基-D-天冬氨酸受体(N-methyl-D-aspartate receptor,NMDAR)的共激动剂,结合NMDAR上的甘氨酸共激活位点,发挥兴奋性作用,产生LTP;高浓度时,它是中枢系统主要的抑制性神经递质,激活Glycine R,产生长时程抑制。人参皂苷Rg1可以显著改善吗啡损伤的空间学习能力,并恢复吗啡抑制的LTP,这种作用依赖于NMDAR[36]。LEE等[37]指出人参皂苷能抑制NMDAR,而这个调节作用和Glycine R密切相关[38]。

6 总结

为还原传统中药人参延缓衰老、促进认知的作用本质,本研究在前期研究的基础上,结合国内外研究现状,对人参皂苷Rg1改善记忆的作用靶点进行了展望。尽管其他的信号通路(钙调蛋白激酶Ⅱ、磷脂酰肌醇3-激酶信号通路、细胞外调节蛋白激酶、雷帕霉素靶蛋白等)也介导了人参皂苷Rg1的保护作用[39-41],笔者认为人参皂苷Rg1的作用还是通过上游的细胞膜受体发挥级联下游的信号通路。因此,上游靶点的揭示将更加有助于阐述人参皂苷的作用机制。

[1] CHATTERJI S,KOWAL P,MATHERS C,et al.The health of aging populations in China and India[J]. Health Aff (Millwood),2008,27:1052-1063.

[2] CHAVES A C, FRAGA V G,GUIMARAES H C,et al.Estrogen receptor-alpha gene Xbal A>G polymorphism influences short-term cognitive decline in healthy oldest-old individuals[J]. Arq Neuropsiquiatr,2017,75(3):172-175.

[3] BROOKS R C.GARRATT M G.Life history evolution reproduction, and the origins of sex-dependent aging and longevity[J]. Ann N Y Acad Sci,2017,1389(1):92-107.

[4] LONG W,ZHANG S C,WEN L,et al.Invivodistribution and pharmacokinetics of multiple active components from Danshen and Sanqi and their combination via inner ear administration[J]. J Ethnopharmacol,2014,156:199-208.

[5] ZHU G,WANG Y,LI J,et al.Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice [J]. Neuroscience,2015,292:81-89.

[6] AKAMA K T,THOMPSON L I,MILNER T A,et al.Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines[J]. J Biol Chem,2013,288(9):6438-6450.

[7] KUBOTA T,MATSUMOTO H,KIRINO Y.Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease[J]. J Pharmacol Sci,2016,131(3):219-222.

[8] TANG H,ZHANG Q,YANG L,et al.GPR30 mediates estrogen rapid signaling and neuroprotection[J]. Mol Cell Endocrinol,2014,387(1-2):52-58.

[9] BOURQUE M,MORISSETTE M,COTE M,et al.Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease[J]. Neurobiol Aging, 2013,34(3):887-901.

[10] WATERS E M,THOMPSON L I,PATEL P,et al.G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus[J]. J Neurosci,2015,35(6):2384-2397.

[11] GABOR C,LYMER J,PHAN A,et al.Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice[J]. Physiol Behav,2015,149:53-60.

[12] GAO Q G,CHAN H Y,MAN C W,et al.Differential ER alpha-mediated rapid estrogenic actions of ginsenoside Rg1 and estren in human breast cancer MCF-7 cells[J]. J Steroid Biochem Mol Biol,2014,141:104-112.

[13] CHEN W F,ZHOU L P,CHEN L,et al. Involvement of IGF-I receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against Abeta(2)(5)(-)(3)(5)-induced toxicity in PC12 cells[J]. Neurochem Int,2013,62(8):1065-1071.

[14] GAO Q G,CHEN W F,XIE J X,et al.Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways[J].J Neurochem, 2009, 109(5):1338-1347.

[15] LI J,WANG F,DING H,et al.Geniposide, the component of the Chinese herbal formula Tongluojiunao, protects amyloid-β peptide (1-42-mediated death of hippocampal neurons via the non-classical estrogen signaling pathway[J]. Neural Regen Res,2014,9(5):474-480.

[16] EGEA J,BUENDIA I,PARADA E,et al.Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection[J]. Biochem Pharmacol, 2015,97(4):463-472.

[17] CALLAHAN P M,BERTRAND D,BERTRAND S,et al.Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholineinvitroand improves memory-related task performance in young and aged animals[J]. Neuropharmacology,2017,117:422-433.

[18] SUN Y,YANG Y,GALVIN V C,et al.Nicotinic α4β2 cholinergic receptor influences on dorsolateral prefrontal cortical neuronal firing during a working memory task[J]. J Neurosci,2017, 37(21):5366-5377.

[19] LU D,XU A,MAI H,et al.The synergistic effects of heat shock protein 70 and ginsenoside Rg1 against tert-butyl hydroperoxide damage modelinvitro[J]. Oxid Med Cell Longev,2015 .DOI:10.1155/2015/437127.

[20] JIN Y,PENG J,WANG X,et al. Ameliorative Effect of Ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system[J].Neurochem Res,2017,42(5):1299-1307.

[21] CHOI S,JUNG S Y,LEE J H,et al.Effects of ginsenosides,active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes[J].Eur J Pharmacol,2002,442(1-2):37-45.

[22] ZHU G,LI J,HE L,et al.MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway[J].Br J Pharmacol,2015,172(9):2354-2368.

[23] JEON S J,LEE H J,LEE H E,et al. Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling[J].Neuropharmacology,2017,113:100-109.

[24] BALIETTI M,GIULI C,FATTORETTI P,et al.Effect of a comprehensive intervention on plasma BDNF in patients with Alzheimer’s Disease[J]. J Alzheimers Dis, 2017,57(1):37-43.

[25] LI F,WU X,LI J,et al. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer’s disease model[J]. Mol Med Rep,2016,13(6):4904-4910.

[26] WAN Q,MA X,ZHANG Z J,et al. Ginsenoside reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor regulated by epigenetic modulation[J]. Mol Neurobiol,2017,54(4):2889-2900.

[27] KEZHU W,PAN X,CONG L,et al.Effects of ginsenoside Rg1 on learning and memory in a reward-directed instrumental conditioning task in chronic restraint stressed rats[J].Phytother Res,2017,31(1):81-89.

[28] CONTESTABILE A,MAGARA S,CANCEDDA L.The GABAergic hypothesis for cognitive disabilities in Down syndrome[J]. Front Cell Neurosci,2017,11:54.

[29] MÖHLER H,RUDOLPH U.Disinhibition,an emerging pharmacology of learning and memory[J].2017,6[2017-02-03].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302145.DOI:10.12688/f1000research.9947.1.

[30] WHISSELL P D,AVRAMESCU S,WANG D S,et al.δGABAA receptors are necessary for synaptic plasticity in the hippocampus: implications for memory behavior[J]. Anesth Analg,2016,123(5):1247-1252.

[31] ZHANG Y V,ORMEROD K G,LITTLETON J T.Astrocyte Ca2+Influx negatively regulates neuronal activity[J].eNeuro,2017,4[2017-03-10].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348542.DOI:10.1523/ENEURO.0340-16.2017.

[32] ZHU J,MU X,ZENG J,et al. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging[J]. PLoS One,2014,9(6):e101291.

[33] BAE M Y,CHO J H,CHOI I S,et al.Compound K,a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons[J].J Neurochem,2010,114(4):1085-1096.

[34] CHOW D M,ZUCHOWSKI K A,FETCHO J R.invivomeasurement of glycine receptor turnover and synaptic size reveals differences between functional classes of motoneurons in zebrafish[J]. Curr Biol,2017,27(8):1173-1183.

[35] ACTON D,MILES G B.Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks[J]. J Neurophysiol,2017,117 (5):1877-1893.

[36] QI D,ZHU Y,WEN L,et al.Ginsenoside Rg1 restores the impairment of learning induced by chronic morphine administration in rats[J]. J Psychopharmacol,2009,23(1):74-83.

[37] LEE E,KIM S,CHUNG K C,et al.20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng,inhibits NMDA receptors in cultured rat hippocampal neurons[J]. Eur J Pharmacol,2006,536(1-2):69-77.

[38] KIM S,KIM T,AHN K,et al.Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons[J]. Biochem Biophys Res Commun,2004,323(2):416-424.

[39] ZHANG S,ZHU D,LI H,et al.Analyses of mRNA profiling through RNA sequencing on a SAMP8 mouse model in response to ginsenoside Rg1 and Rb1 Treatment[J]. Front Pharmacol, 2017. DOI:10.3389/fphar.2017.00088.

[40] YANG L,ZHANG J,ZHENG K,et al.Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice[J]. J Gerontol A Biol Sci Med Sci,2014,69(3):282-294.

[41] SONG X Y,HU J F,CHU S F,et al.Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J].Eur J Pharmacol,2013,710(1-3):29-38.

猜你喜欢

可塑性神经递质细胞膜
科普拟人让理解更轻松
槐黄丸对慢传输型便秘大鼠结肠神经递质及SCF/c-kit通路的影响
度洛西汀治疗对抑郁症患者血清神经递质及神经功能相关因子的影响
甲基苯丙胺改变成瘾小鼠突触可塑性基因的甲基化修饰
内源性NO介导的Stargazin亚硝基化修饰在脑缺血再灌注后突触可塑性中的作用及机制
超声刺激小鼠伏隔核后c-Fos蛋白及结构可塑性改变的实验
快乐不快乐神经递质说了算
外周血红细胞膜脂肪酸C20:1n9水平与冠状动脉病变严重程度的关系研究
细胞膜色谱研究进展及其在中药活性成分筛选中的应用
认知的发展及衰退模式