分裂四元数矩阵方程AX+XB=C的反Hermite 解
2018-12-28李明照袁仕芳
李明照,袁仕芳,田 勇
分裂四元数矩阵方程+=的反Hermite 解
李明照,*袁仕芳,田 勇
(五邑大学数学与计算科学学院,广东,江门 529020)
针对分裂四元数矩阵,和,研究矩阵方程+的反Hermite 解存在的充分必要条件以及有解时的通解表达式。本文利用Kronecker 积,矩阵列拉直算子以及Moore-Penrose 广义逆和分裂四元数矩阵的复表示。
分裂四元数矩阵;矩阵方程;矩阵列拉直算子;Moore-Penrose 广义逆
0 引言
本文引用如下符号:
1 几个引理和定义
证明
由文献[8]引理 2.6,有以下结果:
2 矩阵方程(1)的解
基于前面讨论,再求解矩阵方程(1)。设
(14)
当有解时,它的通解可以表示为
在有解的条件下,记方程(1)的解集合为AH,则
为适当阶数的实向量。进一步,当
证明 矩阵方程(1)可变为
由引理7有
[1] Huang L P. The matrix equation AXB + CXD = E over the quaternion field[J]. Linear Algebra Appl.,1996,234: 197-208.
[2] Yuan S F, Liao A P, Lei Y. Least squares Hermitian solution of the matrix equation (AXB,CXD) = (E,F) with the least norm over the skew field of quaternions[J]. Math. Comput. Model., 2008,48:91-100.
[3] Yuan S F, Liao A P. Least squares Hermitian solution of the complex matrix equationwith the least norm[J].Journal of the Franklin Institute,2014,351: 4978-4997.
[4] Zhang F, Wei M, Li Y, et al. Special least squares solutions of the quaternion matrix equation AXB + CXD = E[J]. Comput. Math. Applic.,2016,72(5):1426-1435.
[5] Alagöz Y, Oral K H, Yüce S. Split quaternion matrices[J]. Miskolc Mathematical Notes., 2012,13:223-232.
[6] Erdögdu M, Özdemir M. On complex split quaternion matrices[J]. Adv. Appl.Clifford Algebras.,2013,23:625- 638.
[7] Erdögdu M, Özdemir M. Two-sided linear split quaternionic equations with unknowns[J]. Linear Multilinear Algebra., 2015,63 (1):97-106.
[8] Yuan S F, Wang Q W, Yu Y B, et al.On Hermitian solutions of the split quaternion matrix equation AXB+CXD=E[J].Advances in Applied Clifford Algebras., 2017,27:3235-3252.
[9] 茂香,姜同松,张兆忠. 分裂四元数线性方程组的Cramer法则[J].泰山学院学报,2016,38(6):37-41.
[11] 戴华. 矩阵论[M].北京:科学出版社,2001.
ON ANTI-HERMITIAN SOLUTIONS OF THE SPLIT QUATERNION MATRIX EQUATION
LI Ming-zhao,*YUAN Shi-fang,TIAN Yong
(School of Mathematics and Computational Science, Wuyi University, Jiangmen, Guangdong 529020, China)
For split quaternion matrices,,we study the necessary and sufficient condition for anti-Hermitian solutions and the general solution expression to split quaternion matrix equationOur tools are the Kronecker product, vec-operator, Moore-Penrose generalized inverse, and the complex representation matrix of split quaternion matrices.
split quaternion matrices; matrix equation; vec-operator; Moore-Penrose generalized inverse
1674-8085(2018)05-0013-04
O241.2
A
10.3969/j.issn.1674-8085.2018.05.003
2018-07-05;
2018-07-20
广东省自然科学基金项目(2015A030313646)
李明照(1988-),男,广东新会人,硕士生,主要从事数值代数研究(E-mail:wuyilimingzhao@126.com);
*袁仕芳(1972-),男,湖南邵阳人,教授,博士,主要从事矩阵论和数值代数研究(E-mail:yuanshifang305@163.com);
田勇(1991-),男,贵州遵义人,硕士生,主要从事数值代数研究研究(E-mail:zytianyong@163.com).