基于rGroEL和rOmpC的牙鲆迟缓爱德华氏菌 血清学诊断试纸条的制备❋
2018-12-22王欣茹唐小千绳秀珍战文斌
王欣茹, 唐小千, 绳秀珍, 邢 婧, 战文斌
(海水养殖教育部重点实验室(中国海洋大学),山东 青岛 266003)
基于rGroEL和rOmpC的牙鲆迟缓爱德华氏菌 血清学诊断试纸条的制备❋
王欣茹, 唐小千❋❋, 绳秀珍, 邢 婧, 战文斌
(海水养殖教育部重点实验室(中国海洋大学),山东 青岛 266003)
本实验旨在制备一种基于重组抗原rGroEL和rOmpC的迟缓爱德华氏菌(Edwardsiellatarda)血清学诊断试纸条,用于定性检测牙鲆 (Paralichthysolivaceus) 血清中抗迟缓爱德华氏菌的抗体水平。前期研究发现分子伴侣蛋白GroEL和外膜蛋白OmpC是迟缓爱德华氏菌的重要免疫保护性抗原。本研究重组表达获得高纯度的rGRoEL和rOmpC,以其免疫健康牙鲆制备抗血清,同时制备获得牙鲆抗迟缓爱德华氏菌全菌血清。ELISA结果显示rGroEL和rOmpC不存在抗原交叉,抗rGroEL和rOmpC血清均可与全菌发生阳性结合,且全菌抗血清也能识别rGroEL和rOmpC。将rOmpC、rGroEL及羊抗鼠IgG划线于NC膜分别作为检测线T1、检测线T2和质控线C,同时以制备的胶体金标记的鼠抗牙鲆IgM单克隆抗体2D8固定于结合垫,构建获得胶体金免疫层析试纸条。将试纸条分别用以检测不同稀释度的各抗血清,检测过程可在15 min内完成,结果显示制备的灭活全菌、rGroEL和rOmpC牙鲆抗血清分别最高稀释200、600与400倍时,均可使检测线T1与T2显红色。同时,以试纸条检测牙鲆免疫全菌灭活疫苗后不同时间点的抗血清,结果显示3、4、5周检测结果为阳性,且检测线颜色随着免疫后时间延长而加深。实验结果表明,制备的基于重组抗原rGroEL和rOmpC迟缓爱德华氏菌血清学诊断试纸条,操作简单,结果快速可见,可以定性检测牙鲆血清中抗迟缓爱德华氏菌的抗体水平,可应用于全菌灭活疫苗、rGroEL和rOmpC亚单位疫苗免疫效果的评价,同时也具有牙鲆爱德华氏菌病的潜在诊断价值。
牙鲆; GroEL; OmpC; 迟缓爱德华氏菌; 血清学诊断; 胶体金免疫层析试纸条
迟缓爱德华氏菌(Edwardsiellatarda)是一种革兰氏阴性细菌,其宿主范围非常广泛,不仅可以感染淡水和海水中养殖的多种鱼类,也可感染两栖、爬行类、海洋哺乳类动物以及人类,其导致的迟缓爱德华氏菌病(Edwardsiellasis)每年给海水养殖业造成巨大的经济损失[1-4]。因此,建立迟缓爱德华氏菌病的快速诊断方法和进行疫苗免疫是及早预防和控制该病原菌传播的关键,对于包括牙鲆(Paralichthysolivaceus)在内的经济鱼类的健康养殖有着重要的切实意义。
血清学方法是诊断和监测动物及人类疾病的常规方法,该方法不仅可以用于诊断病原,而且反映的抗体水平可以用来评估鱼体的免疫状况[5]。血清学的检测方法有凝集试验、ELISA、中和试验、免疫荧光技术等。这些方法虽然有效,但是都需要专用仪器和专业人员,耗时长、操作复杂[6-7]。胶体金免疫层析法(Colloidal gold immunochromatography assay, GICA)的间接法广泛应用于血清学检测[8],能快速检测出血清中病原菌的抗体,准确度高、操作简单,结果可见,适用于基层养殖场的实时检测。
本实验室研究人员前期研究发现,分子伴侣蛋白GroEL和外膜蛋白OmpC是迟缓爱德华氏菌的免疫保护性抗原,均可诱导牙鲆产生较高水平的抗体,有较高的相对免疫保护率[9-10],具备作为候选亚单位疫苗的潜力。本研究利用免疫保护性抗原GroEL和OmpC,结合胶体金免疫层析技术,制备基于重组抗原rGroEL和rOmpC的迟缓爱德华氏菌血清学诊断试纸条,用以定性检测牙鲆血清中抗迟缓爱德华氏菌抗体水平,应用于全菌灭活疫苗、rGroEL和rOmpC亚单位疫苗免疫效果的评价,同时也具有牙鲆爱德华氏菌病的潜在诊断价值。
1 材料与方法
1.1 实验动物
牙鲆购自山东日照东港区海珍品研究所,体重300 g,在过滤海水中暂养1周,盐度约为30,水温为20~22 ℃,pH为7.4~7.8,期间连续充气,每天换水一次,投喂颗粒饲料一次。
1.2 抗原的重组表达与纯化
rGroEL和rOmpC抗原表达菌由本实验室构建并保藏[9-10]。将重组表达菌接种到含0.1% 氨苄抗生素的500 mL LB液体培养基中,37 ℃振荡培养6 h,收集1 mL菌体,然后加入终浓度为1.0 mmol/L IPTG诱导表达12 h后,再收集1 mL菌体。剩下的培养物于8 000g离心10 min后,再加入50 mL Binding buffer(8 mol/L尿素,0.5 mol/L NaCl,20 mmol/L Na3PO4,30 mmol/L咪唑,调整pH至7.4)。经过超声破碎之后,12 000g离心5 min。样品需要用0.45 μm的滤膜过滤,然后加入镍琼脂糖亲和层析柱,经Binding buffer平衡后,以Elution buffer(8 mol/L尿素,0.5 mol/L NaCl,20 mmol/L Na3PO4,500 mmol/L咪唑,调整pH至7.4)作为洗脱液,把洗脱下来的蛋白分步进行收集,然后分步透析,透析液中尿素浓度从8、6、4、2至0 mol/L依次降低,中间间隔12 h更换透析液,最后以PBS透析。SDS-PAGE检测IPTG诱导前后和纯化后的样品。
1.3 抗血清的制备及特性分析
迟缓爱德华氏菌从患病牙鲆体中分离并保藏[11]。根据文献[12]制备迟缓爱德华氏菌全菌灭活疫苗。用无菌PBS将纯化的rGroEL和rOmpC稀释为1 mg/mL,灭活全菌调整为1.0×108CFU/mL,用注射乳化器将其与弗式完全佐剂1∶1混合后以腹腔注射的方式免疫健康牙鲆,每种疫苗接种10尾,每尾200 μL,对照组注射无菌生理盐水。2周后接种添加弗氏不完全佐剂的每种疫苗加强免疫一次。首次免疫后35天尾静脉采血,室温倾斜放置1 h,转入4 ℃过夜,次日4 ℃,8 000g离心15 min获得全菌灭活疫苗和亚单位疫苗免疫后的牙鲆血清。
间接ELISA法分析抗血清特性。取浓度为1.0×108CFU/mL灭活的迟缓爱德华氏菌、20 μg/mL rGroEL和20 μg/mL rOmpC作为包被液分别加入到酶标板中,每孔100 μL,设置3个重复,4 ℃静置过夜。次日用PBST(含有0.5% Tween 20 的PBS缓冲液)洗涤3次,每次5 min后,每孔加入200 μL 4 %的牛血清白蛋白(BSA),37 ℃封闭1 h。PBST洗涤后,将各免疫组血清用无菌PBS稀释成不同浓度梯度,加入100 μL,同上孵育洗涤后,加入100 μL鼠抗牙鲆IgM单克隆抗体2D8(1∶2 000)。同上孵育洗涤后,加入100 μL碱性磷酸酶标记的羊抗鼠IgG抗体(Sigma,1∶5 000),37 ℃孵育45 min。完成最后一次洗涤后,每孔加入100 μL新鲜配制的硝基苯磷酸酯(pNpp)发色液,酶标仪测量在405 nm处读取OD值。未经免疫的牙鲆血清作为对照组。P/N≥2.1时为阳性。
1.4 胶体金免疫层析试纸条的制备
复苏并培养分泌抗牙鲆IgM单抗的杂交瘤细胞株2D8[13],分别腹腔注射BALB/c小鼠,采集腹水,辛酸-硫酸铵法提纯获得单抗2D8。根据文献[14]制备金标抗体,采用柠檬酸三钠还原法制备胶体金,取0.01%氯金酸溶液100 mL,放入微波炉中,高档火沸腾2 min,迅速一次性加入一定量的1%柠檬酸三钠溶液,放入微波炉中,中低档火继续加热3 min,冷却至室温,补足失水,制得颗粒大小为20~30 nm的胶体金,用0.1 mol/L碳酸钾溶液调节胶体金pH为8.2。将抗牙鲆IgM单抗2D8按合适的比例加入胶体金中,再加入BSA,离心纯化后用金标保存液(含1%蔗糖,1% BSA,0.1% Tween-20和0.02%叠氮钠的0.01 mol/L PBS,pH=7.4)悬起,即为金标单抗2D8液体。将制成的金标单抗2D8液体喷涂到玻璃纤维上,冷冻干燥,即为载有金标单抗2D8的金标垫。
分别将一定浓度的rOmpC和rGroEL按照一定间距划线于硝酸纤维素膜作为检测线T1和T2,将0.25 mg/mL羊抗小鼠IgG划线于硝酸纤维素膜作为质控线,晾干,于封闭液中浸泡。在载体板上依次贴上硝酸纤维素膜、吸水垫、金标垫和样品垫,再用切条机切成3.7 mm宽的试纸条,装入包装卡壳,密封于铝箔袋中保藏。检测样品时,平放试纸检测卡,将血清用PBS进行稀释,向样品孔中分别滴加检测样品液100 μL,等待10~15 min,肉眼观察检测结果,根据检测线T1、T2显色情况来判断免疫情况(见图1)。
1.5 胶体金免疫层析试纸条的应用
将制备的牙鲆抗迟缓爱德华氏菌血清,抗rGroEL血清和抗rOmpC血清用无菌PBS分别进行一系列浓度稀释,向试纸条检测卡的样品孔中分别滴加100 μL样品液,等待10~15 min,肉眼观察检测结果。此外,制备迟缓爱德华氏菌灭活疫苗,免疫30尾牙鲆,分别于免疫后第0、1、2、3、4和5周随机选取3尾牙鲆抽取外周血,室温倾斜放置1 h后,置于4 ℃冰箱过夜,次日4 ℃,8 000g离心15 min收集牙鲆抗血清,将收集的3尾牙鲆抗血清混合。用制备的试纸条检测各时间点的血清样品,将检测结果与间接ELISA比较。
(1:T1、T2和质控线均出现红色,即表示样品为全菌灭活疫苗免疫牙鲆的抗血清;2:T1和质控线出现红色,即表明样品为rOmpC亚单位疫苗免疫牙鲆的抗血清;3:T2和质控线出现红色,即表明样品为rGroEL亚单位疫苗免疫牙鲆的抗血清;4:仅出现质控线时,判为阴性,表明不含特异性抗体或抗体水平低于最低检测限;5:检测过程中无质控线出现时,表明试纸条失效。1: T1, T2 and control line were formed pink lines, which means the sample was flounder serum againstE.tarda; 2: T1 and control line were formed pink lines, which means the sample was flounder serum against rOmpC; 3: T2 and control line were formed pink lines, which means the sample was flounder serum against rGroEL; 4: Only control line was formed a pink line, which means no specific antibodies were contained in the sample or the level was too low to be detected.5:The absence of a pink line means the strip failed.)
图1 GICA检测结果示意图
Fig.1 The schematic diagram of detecting results by GICA
2 结果
2.1 重组抗原rOmpC和rGroEL的制备
电泳结果显示,经IPTG诱导的rOmpC重组表达菌和rGroEL重组表达菌的全菌蛋白中分别出现了相对分子量约为60 kDa(见图2A)和65 kDa(见图2B)的蛋白条带,符合预期结果,而未诱导的重组菌中没有出现相对应大小的条带,表明目的蛋白rOmpC和rGroEL在大肠杆菌中成功表达。经亲和层析柱纯化后,目的蛋白纯度很高,可以用于后续试验。
2.2 ELISA分析抗血清特性
ELISA结果如图3所示,牙鲆经免疫全菌灭活疫苗,rGroEL亚单位疫苗和rOmpC亚单位疫苗后均产生特异性抗体,抗血清效价分别为1 200、600和400。当抗rGroEL血清稀释250倍,抗rOmpC血清稀释200倍时,均可与迟缓爱德华氏菌全菌发生阳性反应(P/N≥2.1),而且抗全菌血清稀释200倍时,仍可与rGroEL和rOmpC发生阳性反应。这表明抗rGroEL和rOmpC血清均可与全菌发生阳性结合,且全菌抗血清也能识别rGroEL和rOmpC。此外,抗rGroEL血清不与rOmpC反应,抗rOmpC血清不与rGroEL反应,表明rGroEL与rOmpC不存在抗原交叉。
2.3 GICA检测血清抗体水平
用制备的试纸条检测各免疫组血清样品,整个检测过程在15 min内完成(结果见图4)。牙鲆抗迟缓爱德华氏菌血清稀释50、100、150和200倍时,T1、T2和质控线出现肉眼可见的红色,检测线颜色随稀释倍数的增加依次变浅,当稀释倍数大于200倍时,只有质控线显色(见图4A);牙鲆抗rGroEL血清分别稀释50、100、200、300和600倍时,T2和质控线显色,当稀释倍数大于600倍时,只有质控线显色(见图4B);牙鲆抗rOmpC血清分别稀释50、100、200和400倍时,T1和质控线显色,当稀释倍数大于400倍时,只有质控线显色(见图4C)。
(A:rOmpC的重组表达及纯化;B:rGroEL的重组表达及纯化。M:蛋白质分子量标准;1: 未诱导重组菌体总蛋白;2: IPTG诱导后重组菌体总蛋白;3: 纯化后的重组蛋白。A: Expression and purification of rOmpC; B: Expression and purification of rGroEL. M: Marker; 1: Negative control without IPTG induction; 2:E.colitransfected with recombinant plasmid induced by IPTG; 3: Purified protein.)
图2 rOmpC和rGroEL的重组表达及纯化
Fig.2 Expression and purification of rOmpC and rGroEL
(A:牙鲆抗迟缓爱德华氏菌血清特性分析结果;B:牙鲆抗GroEL血清特性分析结果;C:牙鲆抗OmpC血清特性分析结果。A: The characteristic of flounder antisera againstE.tarda; B: The characteristic of flounder antisera against rGroEL; C: The characteristic of flounder antisera against rOmpC.)
图3 ELISA分析各抗血清特性
Fig.3 The characteristic of flounder antisera analysed by ELISA
用制备的试纸条检测全菌灭活疫苗免疫牙鲆后不同时间点的抗血清样品(见图5A),结果显示免疫后第0、1和2周的血清不能使检测线显色,结果呈阴性;第3至5周的血清能与检测线上的蛋白结合,使之出现2条红线,结果呈阳性,且检测线颜色随着免疫后时间延长而加深。间接ELISA结果显示(见图5B),包被灭活全菌来检测免疫后不同时间点的抗血清时,从第2周开始特异性抗体的显著增高,检测结果为阳性(P/N≥2.1),但是特异性抗体水平不是很高,抗rGroEL和rOmpC的抗体含量也不多,所以包被重组蛋白来检测抗血清时,从第3周开始样品检测为阳性,这与试纸条检测结果一致。
(A:牙鲆抗迟缓爱德华氏菌血清抗体水平测定结果; B: 牙鲆抗rGroEL血清抗体水平测定结果; C:牙鲆抗rOmpC血清抗体水平测定结果。“+”表示阳性,“-”表示阴性。A: Detecting the antibody levels of flounder serum againstE.tarda; B: Detecting the antibody levels of flounderserum against rGroEL. C: Detecting the antibody levels of flounderserum against rOmpC; “ + ” show positive, “-” show negative.)
图4 GICA检测各免疫组血清抗体水平
Fig.4 Detecting the antibody levels of flounder antisera by GICA
(A:GICA检测牙鲆免疫全菌灭活疫苗后不同时间点的抗血清结果;B:ELISA检测牙鲆免疫全菌灭活疫苗后不同时间点的抗血清结果。“+”表示阳性,“-”表示阴性。A: Detecting the changes of specific antibody in flounder serum after immunized with inactivatedE.tardaby GICA; B: Detecting the changes of specific antibody in flounder serum after immunized with inactivatedE.tardaby ELISA. “ + ” show positive, “-” show negative.)
图5 GICA和ELISA检测牙鲆免疫全菌灭活疫苗后特异性抗体水平的变化
Fig.5 Detecting the changes ofspecific antibody in flounder serum after immunization by GICA and ELISA
3 讨论
GroEL是一个高度保守的分子伴侣,属于HSP60家族,存在于细菌外膜和分泌组中,对蛋白质的正确折叠和组装至关重要[15-16]。OmpC是革兰氏阴性细菌外膜上的孔道蛋白,在菌体上丰度高,是主要的表面抗原[17]。实验室前期研究显示,迟缓爱德华氏菌的GroEL和OmpC都是重要的免疫保护性抗原,具有良好的免疫原性,能引起鱼体较强的体液免疫应答,产生特异的保护性抗体。本研究制备了牙鲆抗rGroEL血清、抗rOmpC血清以及抗迟缓爱德华氏菌血清,间接ELISA法分析各抗血清特性表明,rGroEL和rOmpC不存在抗原交叉,推测二者结构差异大,抗原决定簇相似度低。此外,依据抗rGroEL和rOmpC血清均可与全菌发生阳性结合,且全菌抗血清也能识别rGroEL和rOmpC,表明重组蛋白与天然结构相似度高,与之前的研究结果一致[9-10]。因此,rGroEL和rOmpC可以作为捕获蛋白用于定性检测牙鲆血清中抗迟缓爱德华氏菌的抗体。本实验暂未探究rGroEL和rOmpC与其他属细菌的抗原交叉性,这两蛋白可能还具有牙鲆迟缓爱德华氏菌病的潜在诊断价值。
胶体金免疫层析试纸具有容易携带、操作简便、结果肉眼可见、不需要专业人员和设备、经济实用等优点,是一种非常有发展前景的即时检测技术。重组抗原的成分单一,能减少非特异性反应,且容易大量获得,利于标准化生产。本实验分别把rGroEL和rOmpC作为试纸条的检测线,若样品中含有抗迟缓爱德华氏菌的抗体,2条检测线均会显色,相比单一蛋白,该方法更加准确。将试纸条用于全菌灭活疫苗和rGroEL、rOmpC亚单位疫苗免疫牙鲆后的抗体水平检测,结果表明试纸条的灵敏度与ELISA相当,而试纸条操作更简单、省时且结果可见。同时将试纸条用于检测牙鲆免疫迟缓爱德华氏菌全菌灭活疫苗后血清中不同时间点的特异性抗体水平,可依据检测线显色的程度来评估免疫后特异性抗体水平高低,适用于养殖现场迟缓爱德华氏菌疫苗免疫效果的快速评价。疫苗中GroEL和OmpC的抗原性存在,便可使用该试纸条,不仅是迟缓爱德华氏菌全菌灭活疫苗、rGroEL和rOmpC亚单位疫苗,减毒疫苗免疫牙鲆后,也可使用该试纸条定性检测特异性抗体水平。此外,若胶体金标记其他养殖鱼类IgM的抗体,则基于rGroEL和rOmpC的试纸条还可拓展应用于更多鱼类血清中迟缓爱德华氏菌特异性抗体的检测。
4 结语
本实验制备的基于rGRoEL和rOmpC的迟缓爱德华氏菌血清学诊断试纸条,准确灵敏,操作简单,结果易于判读,可以定性检测牙鲆血清中抗迟缓爱德华氏菌的抗体水平,适用于养殖现场中快速评价迟缓爱德华氏菌全菌灭活疫苗、rGroEL和rOmpC亚单位疫苗的免疫效果,同时也具有诊断牙鲆爱德华氏菌病的潜在价值。
[1] Mohanty B R, Sahoo P K. Edwardsiellosis in fish: a brief review[J]. Journal of Biosciences, 2007, 32(3): 1331-1344.
[2] Leung K Y, Siame B A, Tenkink B J, et al.Edwardsiellatarda-virulence mechanisms of an emerging gastroenteritis pathogen[J]. Microbes and Infection, 2012, 14(1): 26-34.
[3] 潘晓艺, 郝贵杰, 姚嘉赟, 等. 中华鳖爱德华菌病病原菌的分离鉴定及致病因子研究[J]. 淡水渔业, 2010(6): 40-45.
Pan X Y, Hao G J, Yao J Y, et al. Identification and pathogenic facts studying forEdwardsiellatardafrom Edwardsiellosis ofTrionyxsinensis[J]. Freshwater Fisheries, 2010(6): 40-45.
[4] 陈爱平, 江育林, 钱冬, 等. 迟缓爱德华氏菌病[J]. 中国水产, 2011(7): 49-50.
Chen A P, Jiang Y L, Qian D, et al. Edwardsiellosis[J]. China Fisheries, 2011(7): 49-50.
[5] Waterstrat P, Ainsworth J, Capley G. Use of an indirect enzyme-linked immunosorbent assay (ELISA) in the detection of channel catfish,Ictaluruspunctatus(Rafinesque), antibodies toEdwardsiellaictaluri[J]. Journal of Fish Diseases, 1989, 12(2): 87-94.
[6] Klllç S, Çelebi B, Yeilyurt M. Evaluation of a commercial immunochromatographic assay for the serologic diagnosis of tularemia[J]. Diagnostic Microbiology and Infectious Disease, 2012, 74(1): 1-5.
[7] 王蔚芳, 李青梅, 郭军庆, 等. 胶体金免疫层析快速检测技术及其在水产养殖业中的应用前景[J]. 渔业科学进展, 2010(3): 113-118.
Wang W F, Li Q M, Guo J Q, et al. Progress and prospect of colloidal gold-based immunochromatographic lateral flow assay and its application in aquaculture[J]. Progress in Fishery Sciences, 2010(3): 113-118.
[8] Zhang J, Guo Y, Hu S, et al. An adhesion molecule-based colloidal gold immunochromatography assay strip for rapidly and specifically detecting chicken antibodies againstMycoplasmagallisepticum[J]. Research in Veterinary Science, 2011, 90(3): 379-384.
[9] Liu F G, Tang X Q, Sheng X Z, et al.Edwardsiellatardaouter membrane protein C: an immunogenic protein induces highly protective effects in flounder (Paralichthysolivaceus) against edwardsiellosis[J]. International Journal of Molecular Sciences, 2016, 17(7): 1117.
[10] Liu F G, Tang X Q, Sheng X Z, et al. DNA vaccine encoding molecular chaperone GroEL ofEdwardsiellatardaconfers protective efficacy against edwardsiellosis[J]. Molecular Immunology, 2016, 79: 55-65.
[11] Tang X Q, Zhan W B, Sheng X Z, et al. Immune response of Japanese flounderParalichthysolivaceusto outer membrane protein ofEdwardsiellatarda[J]. Fish & Shellfish Immunology, 2010, 28(2): 333-343.
[12] Du Y, Tang X Q, Sheng X Z, et al. Immune response of flounder (Paralichthysolivaceus) was associated with the concentration of inactivatedEdwardsiellatardaand immersion time[J]. Veterinary Immunology and Immunopathology, 2015, 167(1): 44-50.
[13] Li Q, Zhan W B, Xing J, et al. Production, characterisation and applicability of monoclonal antibodies to immunoglobulin of Japanese flounder (Paralichthysolivaceus)[J]. Fish & Shellfish Immunology, 2007, 23(5): 982-990.
[14] Sheng X Z, Song J L, Zhan W B. Development of a colloidal gold immunochromatographic test strip for detection of lymphocystis disease virus in fish[J]. Journal of Applied Microbiology, 2012, 113(4): 737-744.
[15] Kumar S R, Parameswaran V, Ahmed V P I, et al. Protective efficiency of DNA vaccination in Asian seabass (Latescalcarifer) againstVibrioanguillarum[J]. Fish & Shellfish Immunology, 2007, 23(2): 316-326.
[16] Zhu H, Lee C, Zhang D, et al. Surface-associated GroEL facilitates the adhesion ofEscherichiacoli to macrophages through lectin-like oxidized low-density lipoprotein receptor-1[J]. Microbes and Infection, 2013, 15(3): 172-180.
[17] Arockiasamy A, Murthy G S, Rukmini M R, et al. Conformational epitope mapping of OmpC, a major cell surface antigen fromSalmonellatyphi[J]. Journal of Structural Biology, 2004, 148(1): 22-33.
DevelopmentofColloidalGoldImmunochromatographyAssayStripforrGroELandrOmpCBasedSerologicalDiagnosisofEdwardsiellosisinFlounder(Paralichthysolivaceus)
WANG Xin-Ru, TANG Xiao-Qian, SHENG Xiu-Zhen, XING Jing, ZHAN Wen-Bin
(The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education,Qingdao 266003, China)
The aim of this workwas to develop a colloidal gold immunochromatography assay strip for the qualitative detection of the antibody againstEdwardsiellatardain flounder serum by using recombinant GroEL (rGroEL) and recombinant outer membrane protein C (rOmpC). In our previous study, molecular chaperone GroEL and OmpCofE.tardawere identified to be the important immune protective antigens. In the present work, high purerGroEL and rOmpC were prepared by inducing constructed recombinantE.coliand immunized flounder to get the antisera. Flounder antisera againstE.tardawere also prepared. The results of ELISA assay showed that no antigenic cross-reactivity was observed between rGroEL and rOmpC, whereas antibodies induced by rGroEL and rOmpC could react withE.tarda, and the rGroEL and rOmpC could be also recognized by flounder anti-E.tardaantibodies. To develop the immunochromatography test strip, rOmpC, rGroEL and goat anti-mouse IgG were immobilized on the nitrocellulose membrane as test line 1 (T1), test line 2 (T2) and control line (C), meanwhile, colloidal gold labelled with monoclonal antibody against flounder IgM 2D8 was fixed on the bonding pad. The strips were then used to detect antisera with different dilutions, which appeared pink color lines at T1 and T2 positions within 15 min when the antisera againstE.tarda, rGroEL and rOmpC with the highest dilutions of 200, 600 and 400 folds, respectively. Meanwhile, the strips were applied to test the antisera that were collected at different weeks after immunization with inactivatedE.tarda, which showed positive results at week 3, 4 and 5, and the intensity of pink lines on test linesbecame deeper with the time after immunization. These results demonstrated that the test strips developed in this work have the advantages of rapid, easy operation and visible results for qualitative detection of the antibody againstE.tarda, which would be applied in evaluating the immune effects of inactivatedE.tardavaccine and subunit vaccines of rGroEL and rOmpC. In addition, it also has the potential value in diagnosis of edwardsiellosis in flounder.
Paralichthysolivaceus; GroEL; OmpC;Edwardsiellatarda; serological diagnosis; colloidal gold immunochromatography assay
S91
A
1672-5174(2018)02-032-06
10.16441/j.cnki.hdxb. 20170037
王欣茹, 唐小千, 绳秀珍, 等. 基于rGroEL和rOmpC的牙鲆迟缓爱德华氏菌血清学诊断试纸条的制备[J]. 中国海洋大学学报(自然科学版), 2018, 48(2): 32-37.
WANG Xin-Ru, TANG Xiao-Qian, SHENG Xiu-Zhen,et al. Development of colloidal gold immunochromatography assay strip for rGroEL and rOmpC based serological diagnosis of edwardsiellosis in flounder (Paralichthysolivaceus) [J].Periodical of Ocean University of China, 2018, 48(2): 32-37.
国家自然科学基金项目(31672685; 31672684; 3142295);泰山学者特聘专家项目资助
Supported by National Natural Science Foundation of China (31672685; 31672684; 3142295); Taishan Scholar Program of Shandong Province
2017-01-20;
2017-03-18
王欣茹(1993-),女,硕士生,主要从事水产动物病害与免疫学研究。
❋ ❋ 通讯作者:E-mail:tangxq@ouc.edu.cn
责任编辑 朱宝象