APP下载

构造函数 曲径通幽

2018-11-29吴嘉琛

数理化解题研究 2018年31期
关键词:因式单调解决问题

吴嘉琛

(河北省张家口市第一中学 075000)

函数与不等式有着密不可分的联系,在不等式问题中,应重视以函数为桥梁,根据问题建立函数模型,用函数思想分析,解决问题.解(证)不等式问题,从实质上说,是研究相应函数的零点,正负值问题.所以,用函数与方程思想来处理这类问题,不仅会优化解题过程,而且会使我们迅速获得解题的途径.

一、参数的取值范围问题

在解决不等式恒成立问题时,一种重要的方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.现举例说明如下:

令f′(x)>0,可得1

令f′(x)<0,可得03.

所以函数f(x)的单调递增区间是(1,3),单调递减区间是(0,1)和(3,+∞).

对于函数g(x)=-x2+2bx-4,x∈[1,2],

当b<1时,[g(x)]max=g(1)=2b-5;

当1≤b≤2时,[g(x)]max=g(b)=b2-4;

当b>2时,[g(x)]max=g(2)=4b-8.

综合所述,b的取值范围是(-,

二、证明不等式

在证明不等式时,当所证式子的结构非常复杂,用通常的比较法、配方法、分解因式等方法不能正常解决时,可以构造函数,通过求导,利用函数的单调性、极值等生成不等关系,证明不等式,使解答过程峰回路转.现举例说明如下.

(1)求a,b;

(2)证明:f(x)>1.

解析(1)略.

猜你喜欢

因式单调解决问题
单调任意恒成立,论参离参定最值
联系实际 解决问题
助农解决问题增收致富
在解决问题中理解整式
数列的单调性
数列的单调性
对数函数单调性的应用知多少
化难为易 解决问题
分解因式中的“变形大法”
含偶重因式(x—a)2的函数高考题赏析