APP下载

酶解薯类淀粉适用于电镜观察其颗粒表面及内部结构

2018-11-23方晨璐黄峻榕任瑞珍蒲华寅刘树兴

农业工程学报 2018年22期
关键词:薯类木薯淀粉酶

方晨璐,黄峻榕,任瑞珍,杨 麒,蒲华寅,刘树兴



酶解薯类淀粉适用于电镜观察其颗粒表面及内部结构

方晨璐,黄峻榕※,任瑞珍,杨 麒,蒲华寅,刘树兴

(陕西科技大学食品与生物工程学院,西安 710021)

为了同步研究淀粉颗粒表面小体和壳层结构,用-淀粉酶、-淀粉酶和普鲁兰酶,在室温下单一或复合酶解马铃薯、红薯、木薯淀粉颗粒,用扫描电子显微镜观察酶解颗粒并进行性质测试。研究结果表明,单一酶作用时,只有-淀粉酶可使3种薯类淀粉显露颗粒表面小体(直径29~73 nm)和壳层结构(厚度150~400 nm);马铃薯淀粉的酶解率(1.1%)远低于其他2种淀粉的(14.1%、16.3%)。马铃薯淀粉表面小体的排列较紧密、壳层结构较致密,决定了其具有较强的抗酶解性和较大的峰值黏度(即膨胀能力)。复合酶作用时,-淀粉酶复合与其单一作用的效果类似。因此单一-淀粉酶有限酶解法可以作为淀粉颗粒表面小体和壳层结构的研究方法,酶解条件为:酶浓度80 U/mL,室温下酶解12 h。该研究结果为淀粉类产品在实际加工过程中的品质控制提供了理论基础。

淀粉;酶;水解;颗粒;结构

0 引 言

淀粉是高等植物中常见的组分,在薯类作物中含量丰富。淀粉的小体和壳层是介于分子和颗粒之间的2个结构层次[1]。目前,主要采用原子力显微镜对淀粉颗粒表面小体进行研究[2-5]。湿热处理后的马铃薯淀粉颗粒的原子力显微镜图像,可观察到尺寸在20~40 nm之间的表面小体[6]。用原子力显微镜观察,发现经反复冻融后的马铃薯淀粉颗粒表面,出现了直径300 nm的小体[7]。研究发现经-淀粉酶处理后,通过原子力显微镜发现了马铃薯淀粉颗粒表面约20 nm的小体[8]。壳层研究方法较多,运用染色法、细胞标记法和化学糊化法处理后的淀粉颗粒,在光学显微镜、原子力显微镜和扫描电子显微镜下呈现清晰的同心环状或层状结构[9-11]。通过光学显微镜观察发现了淀粉颗粒由结晶层和无定形层交替排列组成,壳层厚度在120~400 nm[12]。经多次冷冻和解冻处理后,马铃薯淀粉颗粒用原子力显微镜发现了间距为30~40 nm的层状结构[6]。利用盐酸对木薯淀粉处理得到微孔淀粉,通过扫描电子显微镜发现了小孔内部呈厚度不均的壳层结构[13]。对转基因方法获得的马铃薯淀粉颗粒进行冷冻、研磨、-淀粉酶酶解处理后,经扫描电子显微镜发现了其壳层结构非常明显[14]。Atkin等[15]研究发现,淀粉颗粒外壳具有较强的膨胀性,随着温度升高,水合作用可使淀粉颗粒外壳膨胀度达200%。

以上对小体和壳层结构的研究都是分别进行的,尚未见可同时观察淀粉小体和壳层结构的方法报道,本研究以薯类(马铃薯、红薯、木薯)淀粉为研究对象,室温下用-淀粉酶、-淀粉酶和普鲁兰酶单一或复合酶解并通过性质测定(热学特性、结晶特性)和扫描电子显微镜观察等,建立了可同时观察淀粉颗粒表面小体和壳层结构的有限酶解法。

1 材料与方法

1.1 试验材料

马铃薯淀粉(榆林市新田源集团富元淀粉有限公司);红薯淀粉(北京德众嘉鑫经贸有限公司);木薯淀粉(上海禾煜贸易有限公司第一分公司)。-淀粉酶(489 U/mg 美国Sigma公司);-淀粉酶(42 U/mg 爱尔兰Megazyme公司);普鲁兰酶(42 U/mg 爱尔兰mdxxegazyme公司)。其他分析纯试剂(天津市天力化学试剂有限公司)。

1.2 试验方法

1.2.1 有限酶解法的不同处理

称取1 g淀粉样品(干基),加入稀释的淀粉酶酶液,制成100 mg/mL的淀粉乳,在室温下,于恒温振荡器中(100 r/min)分别进行单一或复合酶解,酶解后倒出上清液,取沉淀,先加入蒸馏水(约5 mL),混匀后离心10 min(3 000 r/min),重复3次,再向沉淀中加入无水乙醇,相同条件醇洗3次,取沉淀自然风干后得到酶解淀粉颗粒。单一酶和复合酶水解试验不同处理见表1,各参数及范围根据预试验确定。其中单一酶水解试验每种酶分别针对酶浓度、酶解时间对薯类淀粉颗粒酶解率的影响做2组单因素试验;复合酶水解试验复合比例、酶解时间对薯类淀粉颗粒酶解率的影响做2组单因素试验。

表1 淀粉颗粒的酶水解不同处理Table 1 Different enzymolysis treatment of starch granules

淀粉颗粒酶解率的计算方法:酶解后,取上清液于540 nm处测定其吸光度值,绘制麦芽糖标准曲线,对照标准曲线,根据上清液吸光度值计算出麦芽糖的含量,依据公式(1)计算酶解率[16-17]。

式中为麦芽糖质量,mg;0为样品总体积,mL;1为测定吸光度所取体积,mL;为样品总质量,mg;0.947为换算系数。

1.2.2 热学特性测定

配制6~8 mg淀粉乳(淀粉质量分数40%),压盘密封后,用Q2000型差式扫描量热仪(美国TA公司)进行糊化温度和糊化焓测定,测定条件:升温速率为10 ℃/min,升温范围为10~100 ℃。

1.2.3 结晶特性测定

样品采用D/max×2200PC型X-射线衍射仪(日本理学公司)进行相对结晶度测定,测定条件:射线波长为1.542 Å的Cu-Kα射线,石墨单色器,管电压和管电流分别为40 kV和40 mA,扫描速度4°/min,扫描范围4°~60°,DS:1°,SS:1°,RS:0.3 mm。相对结晶度由分析软件Jade 5.0计算。

1.2.4 扫描电子显微镜观察

将淀粉样品用导电胶固定于载物台上,真空喷金处理后,置于S-4800型扫描电子显微镜(日本日立公司)下拍摄[18]。

2 结果与讨论

2.1 单一和复合酶解对酶解率的影响

2.1.1 单一酶水解试验

单一酶解时,以-淀粉酶为例。由图1a可知,在室温下,马铃薯、红薯和木薯淀粉颗粒的酶解率都随-淀粉酶酶浓度的增大而增加,当-淀粉酶的酶浓度为80 U/mL时,酶解率基本不变。酶解初期,酶解速率上升较快,当-淀粉酶酶解时间达到12 h时,酶解率基本不再增加(图1b)。主要由于无定形区的抗酶解能力弱,酶先作用于无定形区,后作用于结晶区[19-20]。马铃薯淀粉酶解率(1.1%)远低于其他2种淀粉(14.1%、16.3%)。主要因为马铃薯颗粒较大,比表面积小,与酶接触的几率较低;且马铃薯淀粉颗粒中酶作用位点和无定形区均少于其他2种淀粉[21-23]。

注:图1a酶解时间为12 h; 图1b酶浓度为80 U·mL-1。

其他酶水解结果如下:3种薯类淀粉颗粒经-淀粉酶和普鲁兰酶单一酶解,酶解率都随酶浓度和酶解时间的增大而增加,当-淀粉酶和普鲁兰酶的酶浓度分别为60、1.0 U/mL时,酶解时间分别为36、2 h时,酶解率基本不变。当酶解率基本不变时,-淀粉酶和普鲁兰酶对淀粉的酶解率均低于-淀粉酶。说明淀粉颗粒表面可被-淀粉酶识别的非还原端和普鲁兰酶作用的-1,6糖苷键较少(<5%)[24-25]。因此,将-淀粉酶、-淀粉酶和普鲁兰酶的酶浓度分别为80、60、1.0 U/mL ,酶解时间分别为12、36、2 h时,作为3种薯类淀粉单一酶解的条件和复合酶解的参考值。因酶解率都小于17%,属于有限酶解。

2.1.2 复合酶水解试验

以-淀粉酶复合酶为例,复合酶水解试验结果见图2。由图2a可知,与-淀粉酶酶解相比,-淀粉酶与-淀粉酶复合酶解淀粉颗粒酶解率较大,因为当-淀粉酶作用淀粉颗粒时,暴露出了更多的非还原端,增加了-淀粉酶的作用位点。-淀粉酶和普鲁兰酶复合酶解淀粉颗粒的酶解率(图2b)稍低于-淀粉酶与-淀粉酶复合时的。研究发现,直链淀粉含有约99%的-1, 4糖苷键和1%的-1, 6糖苷键,而支链淀粉含有约95%的-1, 4糖苷键和5%的-1, 6糖苷键,当-淀粉酶对淀粉颗粒表面进行作用时,淀粉颗粒表面暴露的普鲁兰酶的作用位点(-1, 6糖苷键)少于-淀粉酶的[26]。

早期研究也指出,-淀粉酶和普鲁兰酶协同酶解时,-淀粉酶首先作用于淀粉颗粒表面,仅能暴露小部分可被普鲁兰酶作用的分支点[27]。因此,试验发现,-淀粉酶和普鲁兰酶复合对颗粒的酶解作用微弱,甚至小于-淀粉酶单一作用的。其他复合酶处理结果简要交待如下:将-淀粉酶与-淀粉酶、-淀粉酶与普鲁兰酶、-淀粉酶和普鲁兰酶的复合比例分别为4:1、150:1、75:1,酶解时间分别为20、6、10 h,作为3种薯类淀粉复合酶解的条件。酶解率都小于23%,属于有限酶解。

注:图中酶解时间为12 h。

2.2 热学特性测定结果

有限酶解后的马铃薯、红薯和木薯淀粉颗粒的起始糊化温度(T)与原淀粉相比变化不大(表2)。马铃薯淀粉糊化焓(Δ)明显大于木薯和红薯淀粉的,说明马铃薯淀粉颗粒的结构致密,结晶结构稳定性高,破坏需要的热能大,抗酶解能力强,这与上述酶解率的测定结果相一致,马铃薯淀粉的酶解率远低于其他2种淀粉的。与原淀粉相比,经过-淀粉酶及与其他淀粉酶复合后,糊化焓(Δ)升高(<0.05)。主要是由于酶作用于淀粉颗粒的无定形区域,酶解后提高了相对结晶度[28-29]。

表2 3种薯类淀粉颗粒有限酶解前后的起始糊化温度和糊化焓

注:同列不同小写字母表示在0.05水平差异显著,下同。

Note: Different letters in the same column indicate significant difference at the 0.05 level, the same below.

2.3 结晶特性测定结果

薯类淀粉颗粒经-淀粉酶及与其他淀粉酶复合后,与原淀粉颗粒相比,其相对结晶度略有增大;-淀粉酶和普鲁兰酶以及二者复合处理的淀粉颗粒与原淀粉颗粒相比,相对结晶度无显著差异(表3),这与上述酶解率的测定结果一致,-淀粉酶对淀粉的酶解能力强于-淀粉酶和普鲁兰酶。酶解过程中,-淀粉酶酶解淀粉颗粒无定形区的能力强,导致结晶区比例增大,相对结晶度升高。研究发现,用-淀粉酶处理大麦淀粉、-淀粉酶与糖化酶复合处理红薯和木薯淀粉颗粒,淀粉的相对结晶度均会略微增大[30-31]。

表3 3种薯类淀粉颗粒有限酶解前后的相对结晶度

2.4 颗粒形貌观察结果

3种薯类淀粉经有限酶解后的颗粒的小体和壳层观察结果见表4。经-淀粉酶单一或与其他淀粉酶复合作用后,马铃薯、红薯、木薯淀粉颗粒表面均显露小体结构;马铃薯淀粉颗粒可观察到壳层结构,红薯同时出现壳层和外壳结构,木薯则只显示外壳结构。-淀粉酶、-淀粉酶与普鲁兰酶复合酶解的3种薯类淀粉出现较大尺寸的小体,普鲁兰酶作用则未出现小体结构;经-淀粉酶、普鲁兰酶及二者复合酶解后的薯类淀粉颗粒未出现壳层和外壳结构。-淀粉酶的酶解作用效果最明显,-淀粉酶其次,普鲁兰酶最弱。用-淀粉酶和-淀粉酶分别对红薯颗粒进行酶解,对比研究发现在同样条件下,-淀粉酶的酶解能力较弱[24]。

表4 3种薯类淀粉经有限酶解后颗粒的表面小体和壳层

注:√,存在;-,不存在。

Note: √, existence; -, non-existence.

前期试验对3种薯类原淀粉颗粒进行扫描电子显微镜观察,发现马铃薯淀粉颗粒呈椭球形,红薯和木薯淀粉颗粒则是一侧为球形,另外一侧为扁平形,且表面都很光滑,没有孔洞、裂缝或者裂纹;颗粒表面无法观察到球形突起的小体结构。在室温下,用蛋白酶对3种薯类淀粉作用后,酶解颗粒的形态与原淀粉颗粒的相近,颗粒表面光滑且未出现小体结构。3种薯类淀粉经-淀粉酶单一或与其他酶复合作用,-淀粉酶或-淀粉酶与普鲁兰酶复合作用后都可观察到颗粒表面小体结构(表4),说明淀粉颗粒表面存在膜结构,其化学本质为淀粉,而不是蛋白质。淀粉中蛋白质含量很低,总量小于0.4%[32]。Han等[33]通过使用蛋白质特异性染料(3-(4-羧基苯甲酰基)喹啉-2-甲醛)揭示马铃薯、玉米和小麦淀粉颗粒中蛋白质的不同位置,共聚焦激光扫描显微镜显示,颗粒中蛋白质主要集中在内部,呈球状。薯类淀粉中脂肪含量极少,仅占0.1%左右[34]。Debet等[35]通过SDS(十二烷基硫酸钠)对马铃薯淀粉颗粒表面进行化学处理,除去颗粒表面脂肪,采用光学显微镜观察处理后的淀粉颗粒,发现其表面形貌与原淀粉基本无差异。

经-淀粉酶单一有限酶解后,3种薯类(马铃薯、红薯、木薯)淀粉颗粒表面均可观察到近球形的小体,排列规则,直径分别为29~58、34~56和34~73 nm(图3a、3b、3c)。马铃薯淀粉颗粒表面的小体堆积紧密;红薯淀粉颗粒表面小体排列较松散,有孔洞;木薯淀粉颗粒表面小体间结合力较弱,有塌陷和裂缝。这与上述酶解率的测定结果一致:马铃薯淀粉的酶解率远低于其他2种淀粉的,对酶的抵抗能力较强,说明颗粒表面小体结构决定了淀粉的酶解特性。

马铃薯淀粉颗粒中心形成空腔结构,外围结构厚度大约为6~7m,呈现有序且致密的同心壳层结构,单个壳层厚度为300~400 nm(图3d)。红薯淀粉颗粒呈现出更明显的同心壳层结构,单个壳层厚度为150~250 nm,但壳层结构比较疏松(图3e)。木薯淀粉颗粒出现空洞,外围结构厚度约为3~4m(图3f)。与红薯和木薯淀粉壳层结构相比,马铃薯淀粉的壳层结构比较致密有序。这与峰值黏度的测定结果一致:前期试验用快速黏度分析仪对3种薯类原淀粉(质量分数5%)进行黏度特性测定,马铃薯淀粉峰值黏度(2 216 mPa·s)明显大于红薯和木薯淀粉的(593和740 mPa·s),即马铃薯淀粉颗粒的膨胀能力较强,说明壳层结构决定了淀粉的膨胀特性。

空腔结构说明3种薯类淀粉颗粒的内部更容易被酶解。有研究报道薯类颗粒结构紧密度不均匀,脐点附近结构相对疏松,易受到-淀粉酶的攻击[36-37]。马铃薯淀粉颗粒表面有划痕和圆斑(图3g);红薯淀粉颗粒外壳的表面出现了随机排列的孔洞和裂缝(图3h);木薯淀粉颗粒外壳的表面出现了裂缝(图3i),与红薯淀粉外壳结构相比,木薯淀粉外壳的均匀度较差。经酶解的颗粒表面出现的划痕和凹陷并未在原淀粉颗粒中发现,说明这些痕迹是由酶解导致的。有研究者在45 ℃下用-淀粉酶对马铃薯淀粉颗粒作用,发现酶解从颗粒表面开始,导致颗粒表面腐蚀[38]。

与-淀粉酶单一有限酶解的效果相似,经-淀粉酶和-淀粉酶复合酶解后的马铃薯、红薯和木薯淀粉颗粒表面都出现了近球形小体,尺寸分别为36~65、32~61、32~52 nm;马铃薯和红薯淀粉显示出壳层结构(厚度分别为300~400和100~150 nm);红薯淀粉还出现了外壳结构(厚度100~150 nm);木薯淀粉呈现的外壳厚度约100~200 nm。经-淀粉酶和普鲁兰酶复合酶解的效果,与-淀粉酶和-淀粉酶复合酶解以及-淀粉酶单一酶解的效果相近。

经-淀粉酶或普鲁兰酶单一有限酶解后,3种薯类淀粉都未发现破裂的颗粒。经-淀粉酶作用后,颗粒表面有被酶侵蚀的痕迹,3种薯类淀粉颗粒表面都出现了尺寸为45~250 nm的小体结构。Tang等[39]用淀粉酶对大麦等谷物淀粉颗粒进行酶解,经过扫描电镜观察,颗粒表面仅出现轻微腐蚀。而普鲁兰酶作用后,颗粒表面无明显变化。与上述单一酶解的酶解率结果一致(酶解率为-淀粉酶>-淀粉酶>普鲁兰酶)。经-淀粉酶和普鲁兰酶复合作用后的效果,与单一-淀粉酶酶解的效果相近,都未出现壳层和外壳结构,这与-淀粉酶和普鲁兰酶复合时的酶解率极低的结果一致。

注:图中数值为淀粉颗粒表面小体、壳层、外壳尺寸。

3 结 论

通过有限酶解法制备3种薯类淀粉的酶解颗粒,对酶解淀粉颗粒的研究结果表明:-淀粉酶单一、与-淀粉酶或普鲁兰酶复合作用后,热学性质及结晶性质与原淀粉的相关性质略有不同;-淀粉酶、普鲁兰酶单一作用或二者复合作用后,以上性质无明显变化。3种薯类淀粉经-淀粉酶单一或与其他酶复合作用,-淀粉酶或-淀粉酶与普鲁兰酶复合作用后都可观察到颗粒表面小体结构。经-淀粉酶单一或与其他2种酶复合作用后,马铃薯淀粉颗粒显示壳层结构,红薯淀粉颗粒同时出现壳层和外壳结构,木薯淀粉颗粒则只显露外壳结构。因此,适合于同时研究淀粉颗粒表面小体与壳层结构的方法为,-淀粉酶有限酶解法,酶解条件为:酶浓度80 U/mL,室温下酶解12 h。

[1] Huang J, Wei M, Ren R, et al. Morphological changes of blocklets during the gelatinization process of tapioca starch[J]. Carbohydrate Polymers, 2017, 163: 324-329.

[2] Kong B, Niu H, Sun F, et al. Regulatory effect of porcine plasma protein hydrolysates on pasting and gelatinization action of corn starch[J]. International Journal of Biological Macromolecules, 2016, 82(3): 37-44.

[3] Salerno M, Żukowska A, Thorat S, et al. High resolution imaging of native wheat and potato starch granules based on local mechanical contrast[J]. Journal of Food Engineering, 2014, 128: 96-102.

[4] Waduge R N, Xu S, Bertoft E, et al. Exploring the surface morphology of developing wheat starch granules by using atomic force microscopy[J]. Starch-Stärke, 2013, 65(5/6): 398-409.

[5] Peroniokita F H, Gunning A P, Kirby A, et al. Visualization of internal structure of banana starch granule through AFM[J]. Carbohydrate Polymers, 2015, 128: 32-40.

[6] Jiranuntakul W, Sugiyama S, Tsukamoto K, et al. Nano-structure of heat-moisture treated waxy and normal starches[J]. Carbohydrate Polymers, 2013, 97(1): 1-8.

[7] Szymońska J, Krok F. Potato starch granule nanostructure studied by high resolution non-contact AFM[J]. International Journal of Biological Macromolecules, 2003, 33(1/2/3): 1-7.

[8] Sujka M, Jamroz J.-amylolysis of native potato and corn starches-SEM, AFM, nitrogen and iodine sorption investigations[J]. LWT-Food Science and Technology, 2009, 42(7): 1219-1224.

[9] 赵凯. 食品淀粉的结构、功能及应用[M]. 北京:中国轻工业出版社,2009.

[10] Malumba P, Doran L, Zanmenou W, et al. Morphological, structural and functional properties of starch granules extracted from the tubers and seeds of[J]. Carbohydrate Polymers, 2017, 178: 286-294.

[11] Huang J R, Chen Z H, Xu Y L, et al. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology[J]. Carbohydrate Polymers, 2014, 102(1): 1001-1007.

[12] French D. Starch chemistry and technology[J]. Quarterly Review of Biology, 2009, 2(4): 57-60.

[13] 陈晓伟,周小柳,唐忠锋. 木薯微孔淀粉的成孔机理研究[J]. 粮油加工,2009(2):95-98.

[14] Pilling E, Smith A M. Growth ring formation in the starch granules of potato tubers[J]. Plant Physiology, 2003, 132(1): 365-371.

[15] Atkin N J, Abeysekera R M, Robards A W. The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm[J]. Carbohydrate Polymers, 1998, 36(2/3): 193-204.

[16] Min W H, Zhou L, Jiang H Y, et al. Optimization of technology for production of maize slowly digestible starch by enzymatic method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6): 296-300.

[17] Foresti M L, Williams M P, Martínez-García R, et al. Analysis of a preferential action of-amylase fromtowards amorphous regions of waxy maize starch[J]. Carbohydrate Polymers, 2014, 102(1): 80-87.

[18] Barrera G N, Calderón-Domínguez G, Chanona-Pérez J, et al.

Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis[J]. Carbohydrate Polymers, 2013, 98(2): 1449-1457.

[19] Kim J Y, Park D J, Lim S T. Fragmentation of waxy rice starch granules by enzymatic hydrolysis[J]. Cereal Chemistry, 2008, 85(2): 182-187.

[20] Lecorre D, Vahanian E, Dufresne A, et al. Enzymatic pretreatment for preparing starch nanocrystals[J]. Biomacromolecules, 2012, 13(1): 132-137.

[21] Dhital S, Shrestha A K, Gidley M J. Relationship between granule size and in vitro digestibility of maize and potato starches[J]. Carbohydrate Polymers, 2010, 82(2): 480-488.

[22] Gomand S V, Lamberts L, Derde L J, et al. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof[J]. Food Hydrocolloids, 2010, 24(4): 307-317.

[23] 詹锦玲,孙冰华,谢雅芸,等. 马铃薯淀粉颗粒的粒度与酶解特性相关性研究[J]. 食品与机械,2017,33(10):39-42.

Zhan Jinling, Sun Binghua, Xie Yayun, et al. Relationship of potato starch granule and its enzymatic hydrolysis properties[J]. Food and Mechinery, 2017, 33(10): 39-42. (in Chinese with English abstract)

[24] Sarikaya E, Higasa T, Adachi M, et al. Comparison of degradation abilities of-and-amylases on raw starch granules[J]. Process Biochemistry, 2000, 35(7): 711-715.

[25] 黄峻榕,付良绅. 淀粉颗粒结构的研究方法[J]. 食品与机械,2010,26(6):5-9.

Huang Junrong, Fu Liangshen. Tools for understanding granular structure of starch[J]. Food and Mechinery, 2010, 26(6): 5-9. (in Chinese with English abstract)

[26] 胡丽花,柴松敏,刘建军,等. 淀粉颗粒结构体系[J]. 粮食与油脂,2011(3):1-3.

Hu Lihua, Chai Songmin, Liu Jianjun, et al. The Scheme of starch granule structures[J]. Cereals and oils, 2011(3): 1-3. (in Chinese with English abstract)

[27] Atia K S, Ismail S A, El-Arnaouty M B, et al. Use of co-immobilized-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield[J]. Biotechnology Progress, 2003, 19(3): 853-857.

[28] Dura A, Błaszczak W, Rosella C M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments[J]. Carbohydrate Polymers, 2014, 101(2): 837-845.

[29] You S, Izydorczyk M S. Comparison of the physicochemical properties of barley starches after partial-amylolysis and acid/alcohol hydrolysis[J]. Carbohydrate Polymers, 2007, 69(3): 489-502.

[30] Shariffa Y N, Karim A A, Fazilah A, et al. Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature[J]. Food Hydrocolloids, 2009, 23(2): 434-440.

[31] Blazek J, Copeland L. Amylolysis of wheat starches II degradation patterns of native starch granules with varying functional properties[J]. Journal of Cereal Science, 2010, 52(2): 295-302.

[32] Tester R F, Yousuf R, Kettlitz B, et al. Use of commercial protease preparations to reduce protein and lipid content of maize starch[J]. Food Chemistry, 2007, 105(3): 926-931.

[33] Han X Z, Hamaker B R. Location of starch granule-associated proteins revealed by confocal laser scanning microscopy[J]. Journal of Cereal Science, 2002, 35(1): 109-116.

[34] Becker A, Hill S E, Mitchell J R. Relevance of amylase-lipid complexes to the behaviour of thermally processed starches[J]. Starch-Stärke, 2015, 53(3/4): 121-130.

[35] Debet M R, Gidley M J. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 47-52.

[36] 缪铭,江波,张涛,等. 慢消化淀粉的研究与分析[J]. 食品与发酵工业,2007,33(3):85-90.

Miao Ming, Jiang Bo, Zhang Tao, et al. A review of research and analysis of slowly digestible starch[J]. Food and Fermentation Industries, 2007, 33(3): 85-90. (in Chinese with English abstract)

[37] Chang R P, Schwartz S J. Characterization of the action ofalpha-amylase on sweet potato starch, amylose and amylopectin[J]. Journal of Food Biochemistry, 2010, 12(3): 191-204.

[38] 刘延奇,李素云,杨留枝,等. 酶催化水解对马铃薯淀粉结构的影响[J]. 粮油食品科技,2007,15(2):47-49.

Liu Yanqi, Li Suyun, Yang Liuzhi, et al. The effect of enzymic hydrolyzation on the structure of potato starch[J]. Science and Technology of Cereals, Oils and Foods, 2007, 15(2): 47-49. (in Chinese with English abstract)

[39] Tang H, Watanabe K, Mitsunaga T. Characterization of storage starches from quinoa, barley and adzuki seeds[J]. Carbohydrate Polymers, 2002, 49(1): 13-22.

Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy

Fang Chenlu, Huang Junrong※, Ren Ruizhen, Yang Qi, Pu Huayin, Liu Shuxing

( of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian710021,)

Research on starch structure can provide a theoretical basis for the modification reaction and application of starch. The surface blocklets and shell structure of starch granules determine their enzymolysis and swelling characteristics. At room temperature, three kinds of amylase (-amylase,amylase and pullulanase) were used alone or in compound for three tuber starch (potato, sweet potato and cassava starch) hydrolysis respectively. The enzymolysis rate of starch granules was calculated, gelatinization enthalpy and relative crystallinity of three tuber starch granules before and after limited enzymolysis were calculated by differential scanning calorimetry and X-rays diffraction, respectively. The surface blocklets and shell structure of the enzymolyzed starch granules was observed by scanning electron microscopy. The results showed that the enzymolysis rate of-amylase was higher than-amylase and pullulanase. The non-reducing end and-1,6 glucoside bond located mainly inside, while-1,4 glucosidic bond located mainly in surface of starch granules. The gelatinization enthalpy and relative crystallinity of the enzymolyzed starch granules increased slightly, these physicochemical properties were close to those of the native starches. The results indicated that the structure of starch granules after enzymolysis was similar to that of native starch granules. Potato starch showed much lower enzymolysis rate (1.1%) than the other two starches (14.1%, 16.3%), and it had the strongest resistance to enzymolysis.In the reaction of single amylase,-amylase could make the surface of three tuber starch granules appear scratches and cracks, and expose surface blocklets (diameter 29-73 nm) and inner shell structure (thickness 150-400 nm). The surface blocklets of potato starch granules were tightly packed; while those of sweet potato starch granules were loosely arranged with holes, and those of cassava starch granules showed collapses and cracks. The enzymolysis rate of potato starch was much lower than that of the other two starches. Potato starch had strong resistance to enzymes. The results indicated that structure of surface blocklets determined the enzymolysis characteristics of starch granules. Compared with sweet potato and cassava starches, the shell structure of potato starch was dense and orderly. This was consistent with the results of peak viscosity measurement. The pasting properties of three tuber starches (5%, w/w) were measured by using rapid viscosity analyzer (RVA), and the peak viscosity of potato starch (2216 mPa·s) was significantly higher than those of sweet potato and cassava starches (593 and 740 mPa·s). Potato starch granules swelled to a larger degree, indicating that the shell structure determines the expansion characteristics of starch.After-amylase hydrolysis, only surface bolcklets of granules was observed. After pullulanase treatment, there was no obvious change for granules and no surface blocklets or shell were observed. When hydrolyzed with mixed amylase, the composite reaction of-amylase was similar to that of single reaction. For example, after hydrolysis with combination of-amylase and-amylase, surface blocklets with sizes of 36-65, 32-61 and 32-52 nm appeared on the surface of potato, sweet potato and cassava starches, respectively. Potato and sweet potato starch showed shell structure (thickness 300-400 nm and 100-150 nm, respectively). Sweet potato and cassava starch appeared hollow shell structure (thickness 100-150 nm and 100-200 nm, respectively). Treatment with-amylase or pullulanase, alone or mixed, could not show shell or outer shell structure for three tuber starch granules. Therefore, the single amylase hydrolysis of-amylase (80 U/mL, room temperature, 12 h) could be used as a method to study surface blocklets and shell structure of starch granules simultaneously.

starch; enzyme; hydrolysis; granule; structure

方晨璐,黄峻榕,任瑞珍,杨 麒,蒲华寅,刘树兴. 酶解薯类淀粉适用于电镜观察其颗粒表面及内部结构[J]. 农业工程学报,2018,34(22):306-312. doi:10.11975/j.issn.1002-6819.2018.22.038 http://www.tcsae.org

Fang Chenlu, Huang Junrong, Ren Ruizhen, Yang Qi, Pu Huayin, Liu Shuxing. Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 306-312. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.038 http://www.tcsae.org

2018-06-20

2018-10-19

国家自然科学基金项目(31772012;31601509)资助

方晨璐,博士生,主要从事淀粉利用研究。 Email:15029949633@163.com

黄峻榕,教授,博士,博士生导师,主要从事淀粉资源的开发与利用研究。Email:huangjunrong@sust.edu.cn

10.11975/j.issn.1002-6819.2018.22.038

TS231

A

1002-6819(2018)-22-0306-07

猜你喜欢

薯类木薯淀粉酶
2021上海国际薯类产品及加工技术装备展览会
2021 上海国际薯类产品及加工技术装备展览会
澳新拟批准一种β-淀粉酶作为加工助剂
异淀粉酶法高直链银杏淀粉的制备
柬埔寨拜灵木薯喜获大丰收,市场价格保持稳定
淀粉酶升高就是胰腺炎吗
挖木薯
薯类是健康食品吗?
巨淀粉酶血症一例
薯类主食化要注意4点