数学趣题大集合
2018-09-15寒水石教研室
寒水石教研室
【一】鸡兔同笼:
大约在1500年前,《孙子算经》中记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?意思是:有若干只鸡和兔同在一个笼子里,数头有35个;数脚有94只。求笼中有鸡和兔各多少只?
※①假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成94÷2=47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数是35-12=23(只)。
【“砍足法”令古今中外数学家赞叹不已,这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,最终把它归成某个已经解决的问题。】
②用“假设法”:假设全部是鸡,头有35个,则脚有35×2=70只,相差94-70=24只,是兔多出的脚,每只兔多2只脚,兔有24÷2=12只,鸡有35-12=23(只)。
③用“方程”来解:解设兔头X只,则鸡有35-X只,列式为4X+(35-X)×2=94,X=12,鸡有35-12=23(只)。
【二】牛顿问题:
英国科学家牛顿,曾经写过一本数学书。书中有一道有名的、关于牛在牧场上吃草的题目,人们把它称为“牛顿问题”:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,几天能把牧场上的草吃尽?(并且牧场上的草是不断生长的)”
※一般解法是:把一头牛一天所吃的牧草看作1。
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天) 所以养21头牛,12天才能把牧场上的草吃尽。
【练一练】有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。如果养15只羊,几天能把牧场上不断生长的草吃尽?
【三】鬼谷算:
我国汉代有位大将叫韩信,他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道:“三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。” 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是:1×70+2×21+3×15=157,157-105=52(个)
【练一练】四皓小学订《中国少年报》若干张,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。四皓小学订《中国少年报》多少张?
【四】电灯泡问题:
“过道里依次挂着标号是1,2,3, ……100的电灯泡,开始它们都是灭的。当第一个人走过时,他将标号为1的倍数的灯泡的开关拉一下;当第二个人走过时,他将标号为2的倍数的灯泡的开关拉一下;当第三个人走过时,他将标号为3的倍数的电灯泡的开关拉一下;……如此进行下去,当第一百个人走过时,他将标号为100 的倍数的灯泡的开关拉一下。问:当第一百个人走过后,过道里亮着的电灯泡标号是多少?”
※ 此题实质是找每个灯泡的因数个数。第一个灯泡只有因数1,灯亮;第二个灯泡有两个因数1、2,等灭;由此可以看出因数的个数是奇数时,灯亮;因数的个数是偶数时,灯灭。故当第一百个人走过后,过道里亮着的电灯泡标号是1、4、9、16、25、36、49、64、81、100.
【五】巧求六位数:
“六位数□4321□能被4321整除,這个六位数是多少?”
※采用“假设──计算──排错──验证”的方法。
假设六位数为943219,那么943219÷4321=218…1241,由于余数大于9,所以不合题意。
假设六位数为843219,则有843219÷4321=195…64,余数大于9,也不合题意。
假设六位数为743219,则743219÷4321=172…7,余数小于9,可见符合条件的六位数为743219-7=743212。
当六位数的首位数分别为6、5、4、3、2、l时,经计算均不合题意。综上分析,要求的六位数为743212。
【练一练】:四位数□89□能被89整除,这个四位是多少?答案:(4895)
【六】时钟问题:
①“钟面上有时针与分针,每针转动的速度是确定的。” 分针每分钟旋转的速度:360°÷60=6°,时针每分钟旋转的速度:360°÷(12×60)=0.5°,在钟面上要么是分针追赶时针,要么是分针超越时针。这里的转动角度用度数来表示,相当于行走的路程。因此钟面上两针的运动相当于典型的追及问题。
例1:钟面上3时多少分时,分针与时针恰好重合?
※整3时,分针在12的位置上,时针在3的位置上,两针相隔90°。当两针第一次重合,就是3时过多少分。在整3时到两针重合的这段时间内,分针要比时针多行走360÷12×3=90°,每分钟分针比时针多走6-0.5=5.5(度),所用时间为90÷5.5≈16.36(分)。
例2:在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?
※在整5时,时针与分针相隔360÷12×5=150°,然后分针先是追上时针,分针需比时针多行走150°,然后超越时针180°,共150+ 180=330°,分针每分钟旋转的速度:360°÷60=6°,时针每分钟旋转的速度:360°÷(12×60)=0.5°,(150+ 180)÷(6— 0.5)= 60(分) 5时60分即6时正。