APP下载

苹果炭疽叶枯病研究进展

2018-08-14马亚男郭洁李林光翟浩余贤美张勇

山东农业科学 2018年5期
关键词:病原学研究进展防治措施

马亚男 郭洁 李林光 翟浩 余贤美 张勇

摘要:苹果作为我国栽培面积最大、产量最高的果树品种,在调整农业结构、发展农村经济和增加农民收入过程中发挥着至关重要的作用。近年来,苹果炭疽叶枯病在全国各苹果产区大范围爆发和流行,造成部分苹果品种叶片脱落、树势削弱,导致次年果实减产甚至绝产,对苹果产量和品质造成巨大影响,严重制约苹果产业健康可持续发展。本文从苹果炭疽叶枯病的病原学研究、侵染机制及抗病机制、防治策略三方面综述了近年来的最新研究进展,以期对苹果炭疽叶枯病有更全面的了解,探寻深入研究该病害病原菌分子致病机理的角度与手段,为防控药剂研发和管理措施优化提供重要参考信息,并为病害综合防治和抗病品种的培育提供新思路。

关键词:苹果;炭疽叶枯病;病原学;侵染机制;防治措施;研究进展

中图分类号:S436.611.1+2-1文献标识号:A文章编号:1001-4942(2018)05-0160-08

Abstract China is the largest apple producer in the world. As a species of major commercial fruit tree, apple (Malus pumila) occupies the largest cultivation area and production in China, and played a significant role in improving agriculture structure, increasing farmers income and developing rural economy. In recent years, the outbreak and prevalence of Glomerella leaf spot (GLS) in a wide range of apple producing area in China have caused the leaf abscission and fruit rot of some apple varieties, which weakened the tree vigor and lead to decline in apple production, even resulted in no yield in the next year. Thus, GLS has an enormous impact on apple output and quality, and has seriously restricted the healthy and sustainable development of apple industry. Here we introduced the latest research progresses of GLS in three aspects: etiology research, infection mechanism as well as disease resistance mechanism and prevention strategies in order to have a deep understanding of this disease and discuss the idea and measure of the molecular pathogenesis research. The results of this research will provide important references for the research and development of effective fungicides and the optimization of management measures, and the new insights into the disease control of GLS and the breeding of disease-resistant cultivars to promote the healthy development of apple industry.

Keywords Apple; Glomerella leaf spot; Etiology; Infection mechanism; Prevention strategy; Research progress

蘋果(Malus pumila)在世界范围内均有种植。2016年全世界苹果种植面积约为5 293 341 hm2,总产量达到89 329 182 t。中国苹果种植面积占到世界近一半(2 383 905 hm2),产量约为44 448 575 t(Food and Agricultural Organization, 2017)。目前,影响苹果产量的主要因素包括低温时间较短、春夏季多雨、相对湿度较高和病虫害严重等。近年来,苹果炭疽叶枯病(Glomerella leaf spot,GLS)在包括中国在内的世界各苹果产区大范围爆发和流行,对苹果产量和品质均造成巨大影响,严重制约苹果产业健康可持续发展。该病害是由围小丛壳(Glomerella cingulata,有性态为炭疽菌属Colletotrichum spp.)侵染引起的,主要侵染苹果叶片,使叶片产生黑褐色病斑,最终干枯脱落,也会在夏季侵染果实造成果面的小型坏死斑点。

1988年,巴西巴拿马地区在两个苹果栽培品种‘金冠和‘嘎啦上发现一新型叶斑病害,经分离鉴定判断其病原菌为G. cingulata[1-3],这是GLS首次被发现并报道 。1997—1999年,由于敏感品种广泛种植和粗放的管理模式,巴西的六个苹果种植区域均发生GLS, GLS迅速成为影响巴西苹果生产的主要问题[4, 5]。美国在1998年发现GLS的发生[2, 3]。2011年8月,江苏省丰县地区三个苹果栽培品种‘嘎啦、‘金冠和‘青冠也发生GLS[6]。该病害在各种植品种间存在较大差异,‘金冠系列,尤其是‘嘎啦对GLS非常敏感,而‘蛇果系列像‘富士则为抗病品种[7]。

GLS虽为我国近年新发生病害,但发展迅速、危害严重,尤其是夏季高温多雨的亚热带气候特别适宜GLS发生与发展[4]。本文从GLS的病原学研究、侵染机制及抗病机制、防治策略三个方面进行总结,以期寻找深入研究该病害病原真菌分子致病机理的角度与手段,为防控制剂研发和管理措施优化提供重要参考信息,并为病害综合防治和抗病育种提供新思路。

1 病原学研究

1.1 病原菌侵染结构的分化

炭疽菌属是一类破坏性极强的半活体营养型植物病原真菌,可引起世界范围内多种植物炭疽病,其生活史包括较为短暂的活体营养阶段和在寄主死亡组织中继续发展的具有高破坏性的死体营养阶段[8, 9]。在病原与寄主互作过程中,真菌分生孢子可分化形成黑化的附着胞,穿透叶片角质层和细胞壁,侵入表皮细胞。附着胞在活的具有完整细胞膜的植物细胞中特化形成侵染囊泡,并长出活体营养型内生菌丝。接着进入死体营养阶段,真菌发生形态变化长出死体营养菌丝,从死的植物细胞中获取养分[10, 11]。炭疽菌属真菌附着胞中积累的黑色素,对其直接穿透角质层成功侵染寄主细胞是非常必要的[12]。附着胞快速产生黑色素有助于高效地从寄主细胞中获取营养,并在寄主组织中成功定殖[13]。有些炭疽菌属真菌可分化产生分生孢子吻合管(conidial anastomosis tubes,CATs),从植物叶片中获得足够养分以保证长时间存活于叶片表面。研究证实,附着胞和CATs的形成是相互抑制的两个分化过程。对可以形成黑化附着胞并能快速侵染寄主的物种而言,CATs的形成是不必要的。Gonalves等[14]通过一系列研究提出,炭疽菌属真菌在附着胞和CATs的分化形成过程中存在细胞间的“群体感应”,但只在细菌和少数真菌中被证实[15]。另有研究显示,寄主植物外源养分的补给可同时抑制CATs[16]和附着胞[17]的形成。

1.2 病原种类与遗传多样性

炭疽菌属具有高度的物种多样性,既有致病性真菌,也有植物内生性真菌,目前根据各物种不同的寄主范围、致病力水平和基因组分析数据可分为11个复合群[18, 19]。研究证实,胶孢刺盘孢(C. gloeosporioides)、尖孢炭疽菌(C. acutatum)、喀斯特炭疽菌(C. karstii)、果生刺盘孢(C. fructicola)和隐秘刺盘孢(C. aenigma)均可引起GLS,主要分布于Acutatum和Gloeosporioides复合群中[20]。王薇等[21]根据新的刺盘孢分类系统,利用形态学、培养特性、多基因系统发育及致病性等特征,明确我国河南省和陕西省部分苹果产区发生的GLS病原为果生刺盘孢和隐秘刺盘孢两个种,归属于Gloeosporioides复合群。

提高遺传变异性对病原真菌克服寄主植物品种抗性、抵御不良环境和提高抗药性是至关重要的。除有性生殖和基因突变,菌丝融合和准性生殖也可提高真菌遗传变异性。研究显示炭疽菌属病原真菌一般不会进行有性生殖,准性生殖在其遗传变异过程中发挥至关重要的作用[22, 23]。但也能在苹果叶片上观察到子囊壳的存在,说明GLS病原也可以在自然条件下通过有性生殖来增加遗传变异机会[24]。

近年来,限制性片段长度多态性(restriction fragment length polymorphism,RFLP)和多位点基因测序(multilocus gene sequencing,MGS)等检测方法已广泛应用于GLS病原菌遗传多样性的研究[24, 25]。虽然MGS可成功对引起巴西和乌拉圭地区GLS和苹果苦腐病(apple bitter rot,ABR)的果生刺盘孢进行分离鉴定,但简单重复序列(inter-simple sequences repeat,ISSR)分子标记法可在更细致的分类水平上分析炭疽菌属真菌各类群的遗传结构[26-29]。同时ISSR分子标记技术还能够根据物种群体的地理位置或寄主偏好来区分种群,计算种群之间的基因多样性、遗传分化和基因流动[26-29]。微卫星位点的进化速率通常高于其他基因组区域,可检测物种的多态性[30]。另外,营养体亲和群(vegetative compatibility group,VCG)的鉴定也被应用于GLS病原真菌种群生物学分子水平的分析研究[25, 31, 32]。

2 病原菌侵染机制

在过去二十几年中,炭疽菌属真菌一直被作为重要的模式病原真菌来进行寄主-病原间分子水平的互作研究。

GLS病原真菌为了成功侵染寄主并在植物组织中定殖,会特化形成附着胞等侵染结构[33]。伴随着附着胞的成熟,其内部会积累大量的甘油和黑色素,增强附着胞的硬度以利于穿透植物细胞的角质层和细胞壁,同时抵御植物分泌各种酶类的降解作用[12]。此侵染过程中,病原真菌除了借助机械压力的穿透作用,还会调动自身合成各种角质和细胞壁降解酶类以利于侵染[33]。病原真菌可在侵染和增殖过程中分泌产生一系列果胶酶(pectolytic enzymes,PE),以降解植物细胞壁中的多糖成分。很多果胶酶包括多聚半乳糖醛酸内切酶(polygalacturonase,PG)[34, 35]、果胶裂解酶(pectate lyase,PL)[36]和果胶酯酶(pectinesterase,PE)[37, 38]已被证实在多种病原真菌的致病过程中发挥着重要作用。

GLS病原侵染的过程也与促分裂原活性蛋白激酶(mitogen-activated protein kinase,MAPK)级联相关。MAPKs级联包含MAPKKK、MAPKK和MAPK,被证实可以参与多种病原真菌侵染相关的形态学调控[9, 39, 40]。敲除一个MAPK基因Cgl-slt2可以影响胶孢刺盘孢营养菌丝生长、孢子形成和致病能力[40]。同样敲除一个MAPKK基因CgMEK1,可使胶孢刺盘孢缺失附着胞的形成能力和致病能力[39]。

Zhou等[41]研究发现,一个三磷酸腺苷(adenosine triphosphate,ATP)结合蛋白CgABCF2对胶孢刺盘孢的附着胞形成、致病性、有性生殖都是至关重要的,但不会影响分生孢子萌发。他们认为CgABCF2是GLS病原真菌诸如形态发育、有性和无性繁殖、附着胞分化和侵染致病等生命进程的基础。

3 抗病机制与防治策略

3.1 寄主植物的抗病机制

GLS病害发展过程中,侵染位点的植物细胞识别病原真菌并快速发生一系列生化反应,其中最早发生的是活性氧(reactive oxygen species,ROS)的瞬间生物合成[42, 43],也被称为氧迸发(oxidative burst),可触发植物防卫反应。NADPH氧化酶(NADPH oxidase,NOX)、黄嘌呤氧化酶(xanthine oxidase,XOD)和过氧化物酶(peroxidase,POD)等都会参与ROS的积累[44],产生的ROS以单线态氧(1O2)、超氧阴离子(O·-2)和氢氧根离子(OH-)的形式存在,并作用于相关细胞进程中[43]。ROS在参与植物光合和呼吸作用[44]的同时,更可作为第二信使参与植物信号传导和防卫反应,比如离子流、基因表达、MAPK的激活、病程相关蛋白(pathogenesis-related proteins,PR)的表达、细胞壁蛋白偶联、植物抗毒素的积累以及木质化等[43, 44]。另有研究证实,ROS可作用于蛋白质和膜脂,提高细胞的电解质渗出率[45],诱导侵染位点的过敏性坏死反应(hypersensitiveresponse,HR)[41, 46]。植物细胞为将ROS的浓度限制在不会产生毒副作用的水平,会调动复杂的ROS清除机制,包括合成愈创木酚过氧化物酶(guaiacol peroxidase,GPOD)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、过氧化氢酶(catalase,CAT)、谷胱甘肽还原酶(glutathione reductase,GR)和超氧化物歧化酶(superoxide dismutase,SOD)等[42, 44],这些酶在猝灭毒性ROS[47]的同时还会参与应对病原真菌侵染的防卫反应[43]。Araujo等[48]曾报道苹果对GLS的抗病能力与被侵染后GPOD的活性相关。

3.2 病害防治策略

GLS不仅侵染叶片和果实,还侵染新芽[53]。在适宜环境条件下,GLS可导致超过90%的落叶率和病果率[49]。使用杀菌剂一直是控制GLS最常用也最有效的方法。二硫代氨基甲酸盐类杀菌剂(如代森锰、代森联和甲基代森锌等)可对GLS起到较为显著的控制效果,在苹果生育早期使用,病害防治指数可达80%[50]。王冰等[51]通过比较不同类型杀菌剂对GLS的防治效果发现,波尔多液在喷施18 d后对炭疽叶枯病菌侵染的抑制作用仍达50%,在病菌侵染后72 h内使用吡唑醚菌酯或在病菌侵染后24 h内使用咪鲜胺对病斑的显症有一定疗效,但持久性不强。连续使用单一药剂存在较高的抗药性,因此炭疽叶枯病的防治应以波尔多液为主,并与吡唑醚菌酯等有机杀菌剂交替使用。还有一些杀菌剂防治组合,比如25%凯润乳油2 000倍+70%丙森锌可湿性粉剂700倍、25%凯润乳油2 000倍+43%戊唑醇悬浮剂3 000倍杀菌效果都比较显著[52]。

为控制GLS,苹果每个生育周期需要喷施杀菌剂15次之多[50]。杀菌剂的使用严重威胁着生态平衡和人类健康,而病原真菌的抗药性和药剂使用成本也在不断提高,这就使开发生态友好型的防治手段显得尤为迫切。人们更期望利用生物防治的策略来应对GLS,尤其在果实敏感期。为节约成本、加快研究进度,多采用离体试验的方法进行生防制剂筛选,但往往存在实验室内离体试验结果与田间效果不一致的现象[53, 54]。Moreira等[55]经田间试验发现,无论是在人工接种病原的试验基地还是在自然发病的商业种植果园,分离苹果叶面的三个细菌菌株[56]芽孢杆菌(Bacillus sp.)、假单胞菌(Pseudomonas putida)和嗜碱芽孢杆菌(Bacillus alcalophilus)都无法有效控制GLS的发展。

乙烯在很多植物细胞进程如果实的成熟和衰老中发挥着重要作用。病原真菌侵染和昆虫为害均可促进植物合成乙烯,产生一系列生化反应,影响植物生长和发育[57]。氨基乙氧基乙烯甘氨酸(aminoethoxyvinlglycine,AVG)可有效抑制植物合成乙烯,使植物的防卫反应滞后[58]。Bogo等[59]经研究发现,在侵染前或侵染后进行AVG处理会利于胶孢刺盘孢在苹果叶片侵染位点处症状发展,提高GLS病害程度。但Meyer等[60]的研究获得了与之相反的结果,他们发现侵染前进行60 mg·L-1和150 mg·L-1的AVG處理可以明显减少GLS引起的叶片脱落,其效果与使用杀菌剂相当;但如果病害已开始发生或者使用杀菌剂防治失败,AVG处理将会导致更为严重的落叶现象。

石莼聚糖作为一种提取自裂片石莼(Ulva fasciata,一种藻类)的水溶性多糖,在防治GLS中具有很大的利用价值,可通过抑制分生孢子萌发和附着胞形成,减缓病害发展速度[48]。在病原真菌侵染前6 d喷施石莼聚糖可以使病害程度减小一半[61],但石莼聚糖并不具有抗微生物活性,只能诱导植物产生抗病性[61-63]。已有研究证明,石莼聚糖可以诱导拟南芥[68]和蒺藜苜蓿(Medicago truncatula)[65]防卫相关基因的表达。同时石莼聚糖也可以诱导植物的氧化迸发,从而降低病害的严重程度[63]。但Araujo等[48]认为,无论是品种特异性还是石莼聚糖诱导的苹果植株对GLS的抗病性,都与病原侵染72 h后SOD和β-1,3-葡聚糖酶活性水平的升高有直接关系。

除此以外,利用病原真菌的激发子来诱导寄主产生抗病性的防治手段,被认为是一种可以在未来替代传统化学防治手段的有效策略[66, 67]。Zhang等[68]通過研究证实,外源的水杨酸(salicylic acid,SA)处理可显著提高寄主的抗氧化能力(T-AOC)和防卫反应酶类的活性,上调5个PR(PR1、PR5、PR8、几丁质酶和β-1,3-葡聚糖酶)基因的表达水平,诱导感病品种‘嘎啦产生对GLS较高的抗病能力,病斑数量和病情指数明显减少。

目前较为有效的控制植物病害的方法是培育和种植抗病品种。所以遗传学研究和苹果抗GLS分子标记的筛选就显得尤为重要。已有研究证实,苹果对GLS的抗病性由一个单隐性基因控制[48, 69],抗病基因型为rr,感病基因型为Rr和RR[70]。Liu等[71]绘制了第一个GLS抗病基因Rgls遗传图谱,包含11个SSR分子标记。Rgls抗病基因被定位于苹果第15个基因连锁群,与微卫星分子标记SSR0304673和SSR0405127有500 kb的基因组距离。Liu等[72]通过对杂交F1代苹果植株的全基因组测序研究,快速定位Rgls基因并鉴定得到3个候选抗病基因。

4 结论

所有植物的先天免疫反应包含两个层面[73],其中第一个层面就是由病原相关分子模式(pathogen- associated molecular patterns,PAMPs)触发的免疫反应(PAMPs triggered immunity,PTI)。PTI是通过植物跨膜的模式识别受体(pattern-recognition receptors,PRRs)来实现的,PRRs可以识别保守的病原相关分子模式,激活寄主植物的第一层免疫反应来抵御入侵微生物的定殖[74-76]。植物的PRRs感知PAMPs,会快速启动与PTI相关的一系列反应,包括丝裂源活性蛋白的级联、防卫反应相关基因的响应和细胞死亡等[77-79]。植物先天免疫系统的第二个层面是以高度多样化的抗性蛋白(R蛋白)为基础,这些R蛋白可以识别各种各样的病原效应蛋白(effector),激活植物免疫反应,即蛋白触发的免疫反应(effector-triggered immunity,ETI)[80, 81]。

不同种类炭疽菌属真菌的体外基因敲除和回补课题的开展促进了对这类模式病原物的研究和利用[10],现已对可侵染模式植物拟南芥(Arabidopsis thaliana)和十字花科蔬菜炭疽病菌(C. higginsianum)[82-84]以及可侵染本氏烟(Nicotiana benthamiana)和烟草(N. tabacum)的西瓜炭疽菌(C. orbiculare)[11]进行深入研究。然而对GLS病原菌等的PAMPs和效应蛋白的研究,还远远滞后于这些真菌的次生代谢分析等,到目前为止只有少数几种效应蛋白得到验证[39-42],今后需从GLS病原-寄主互作蛋白着手,阐述该病菌的分子致病机理。

参 考 文 献:

[1] Leite Junior R P, Tsuneta M, Kishino A R. Ocorrencia demancha foliar de Glomerella em macieira noestado do Parana [M]. Londrina: Fundacao Instituto Agronomico do Parana, 1988.

[2] González E, Sutton T B. First report of Glomerella leaf spot (Glomerella cingulata) of apple in the United States [J]. Plant Disease, 1999, 83(11):1074.

[3] Gonzalez E. Characterization of isolates of Glomerella cingulata causal agent of Glomerella leaf spot and bitter rot of apples based on morphology and genetic, molecular, and pathogenicity tests[D]. Raleigh:North Carolina State University, 2003.

[4] Crusius L U, Forcelini C A, Sanhueza R M V, et al. Epidemiology of apple leaf spot[J]. Fitopatol. Bras., 2002, 27(1): 65-70.

[5] Velho A C, Stadnik M J. First report of Colletotrichum karstii causing Glomerella leaf spot on apple in Santa Catarina State, Brazil[J]. Plant Disease, 2014, 98(1):157.

[6] Wang C X, Zhang Z F, Li B H, et al. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China [J]. Plant Disease, 2012, 96(6):912.

[7] 宋清, 王素侠, 杨春亮,等. 苹果炭疽菌叶枯病的研究初报[J]. 落叶果树, 2012(2):29-30.

[8] O′Connell R J, Thon M R, Hacquard S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9):1060-1065.

[9] Gan P, Ikeda K, Irieda H, et al. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist, 2013, 197(4):1236-1249.

[10]Perfect S E, Hughes H B, O′Connell R J, et al. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions[J]. Fungal Genetics and Biology, 1999, 27(2/3): 186-198.

[11]Shen S, Goodwin P H, Hsiang T. Infection of Nicotiana species by the anthracnose fungus, Colletotrichum orbiculare[J]. European Journal of Plant Pathology, 2001, 107: 767-773.

[12]Ludwig N, Lhrer M, Hempel M, et al. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola[J]. Mol. Plant Microbe. Interact., 2014, 27(4):315-327.

[13]Araújo L, Gonalves A E, Stadnik M J. Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides[J]. Phytoparasitica, 2014, 42(5):631-640.

[14]Gonalves A E, Velho A C, Stadnik M J. Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple[J]. European Journal of Plant Pathology, 2016, 146(3):497-506.

[15]Albuquerque P, Casadevall A. Quorum sensing in fungi—a review[J]. Medical Mycology, 2012, 50(4):337-345.

[16]Ishikawa F H, Souza E A, Read N D, et al. Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum[J]. Fungal Biology, 2010, 114(1):2-9.

[17]Gonalves A E, Stadnik M J. Interference of ulvan on apressoria development and melanization of Colletotrichum gloeosporioides[J]. Tropical Plant Pathology, 2012, 37(6): 431-437.

[18]Damm U, Cannon P F, Woudenberg J H C, et al. The Colletotrichum acutatum species complex[J]. Studies in Mycology, 2012, 73(1):37-113.

[19]Weir B S, Johnston P R, Damm U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1):115-180.

[20]Bragana C A D. Molecular characterization of Colletotrichum spp. associated with fruits in Brazil[C]//Materials Science Forum. 2013:41-48.

[21]王薇, 符丹丹, 張荣,等. 苹果炭疽叶枯病病原学研究[J]. 菌物学报, 2015, 34(1):13-25.

[22] Gabriela Roca M, Read N D, Wheals A E. Conidial anastomosis tubes in filamentous fungi[J]. FEMS Microbiology Letters, 2005, 249(2):191-198.

[23]Ishikawa F H, Souza E A, Shoji J Y, et al. Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen[J]. PLoS One, 2012, 7(2):e31175.

[24]Velho A C, Alaniz S, Casanova L, et al. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay[J]. Fungal Biology, 2015, 119(4):229-244.

[25]González E, Sutton T B, Correll J C. Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests[J]. Phytopathology, 2006, 96(9):982-992.

[26]Kumar N, Jhang T, Sharma T R. Molecular and pathological characterization of Colletotrichum falcatum infecting subtropical Indian sugarcane[J]. Journal of Phytopathology, 2015, 159(4):260-267.

[27]Mckay S F, Freeman S, Minz D, et al. Morphological, genetic, and pathogenic characterization of Colletotrichum acutatum, the cause of anthracnose of almond in Australia[J]. Phytopathology, 2009, 99(8):985-995.

[28]Rampersad S N. Genetic structure of Colletotrichum gloeosporioides sensu lato isolates infecting papaya inferred by multilocus ISSR markers[J]. Phytopathology, 2013, 103(2):182-189.

[29]Ratanacherdchai K, Wang H K, Lin F C, et al. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose[J]. African Journal of Microbiology Research, 2010, 4(2):76-83.

[30]Wolfe A D, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology[M]. New York: Springer US,1998:43-86.

[31]Brooker N L, Leslie J F, Dickman M B. Nitrate non-utilizing mutants of Colletotrichum and their use in studies of vegetative compatibility and genetic relatedness[J]. Phytopathology, 1991, 81(6):672-677.

[32]Leslie J F. Fungal vegetative compatibility[J]. Annual Review of Phytopathology, 1993, 31:127-150.

[33]Deising H B, Werner S, Wernitz M. The role of fungal appressoria in plant infection[J]. Microbes and Infection, 2000, 2(13):1631-1641.

[34]Centis S, Dumas B, Fournier J, et al. Isolation and sequence analysis of Clpgl, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum[J]. Gene, 1996, 170(1):125-129.

[35]Li J, Goodwin P H. Expression of cgmpg2, an endopolygalacturonase gene of Colletotrichum gloeosporioides f. sp. malvae, in culture and during infection of Malva pusilla[J]. Journal of Phytopathology, 2002, 150(4/5):213-219.

[36]Wei Y, Shih J, Li J, et al. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla[J]. Microbiology, 2002, 148(7):2149-2157.

[37]Shih J, Wei Y, Goodwin P H. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection[J]. Gene, 2000, 243(1/2):139-150.

[38]Yakoby N, Beno-Moualem D, Keen N T, et al. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(8):988-995.

[39]Kim Y K, Kawano T, Li D, et al. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides[J]. Plant Cell, 2000, 12(8):1331-1343.

[40]Yong H Y, Bakar F D A, Illias R M, et al. Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioides[J]. Brazilian Journal of Microbiology, 2013, 44(4):1241-1250.

[41]Zhou Z S, Wu J J, Wang M Y, et al. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis, 2017, 110:85-92.

[42]Quan L J, Zhang B, Shi W W, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1):2-18.

[43]Shetty N P, Lyngs Jrgensen H J, Jensen J D, et al. Roles of reactive oxygen species in interactions between plants and pathogens[J]. European Journal of Plant Pathology, 2008, 121(3):267-280.

[44]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399.

[45]Demidchik V, Straltsova D, Medvedev S S, et al. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment[J]. Journal of Experimental Botany, 2014, 65(5):1259-1270.

[46]Torres M A. ROS in biotic interactions[J]. Physiologia Plantarum, 2010, 138(4):414-429.

[47]De Gara L, De Pinto M C, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2003, 41(10):863-870.

[48]Araujo L, Stadnik M J. Cultivar-specific and ulvan-induced resistance of apple plants to Glomerella leaf spot are associated with enhanced activity of peroxidases[J]. Acta Scientiarum, Agronomy(UEM), 2013, 35(3):287-293.

[49]Wang B, Li B H, Dong X L, et al. Effects of temperature, wetness duration, and moisture on the conidial germination, infection, and disease incubation period of Glomerella cingulata[J]. Plant Disease, 2015, 99(2):249-256.

[50]Katsurayama Y, Boneti J I S. Manejo da mancha da Gala[J]. Agropecu. Catarin., 2012, 25(2):45-51.

[51]王冰, 王彩霞, 史祥鵬,等. 不同杀菌剂对苹果炭疽叶枯病的防治效果[J]. 植物保护, 2014(6):176-180.

[52]范昆, 李晓军, 李林光,等. 苹果炭疽叶枯病的田间防控试验[J]. 山东农业科学, 2014,46(2):109-110,115.

[53]Andrews J H. Biological control in the phyllosphere[J]. Annual Review of Phytopathology, 1992, 30:603-635.

[54]Bettiol W. Biocontrole na filosfera: problemas e perspectivas[J]. Revis. Anu. Patol. Plantas.,1998,5:59-97.

[55]Moreira R R, Mio L L M D. Potential biological agents isolated from apple fail to control Glomerella leaf spot in the field[J]. Biological Control, 2015, 87:56-63.

[56]Moreira R R, Nesi C N, De Mio L L M. Bacillus spp. and Pseudomonas putida, as inhibitors of the Colletotrichum acutatum, group and potential to control Glomerella leaf spot[J]. Biological Control, 2014, 72:30-37.

[57]Kim C Y, Liu Y, Thorne E T, et al. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants[J]. Plant Cell, 2003, 15(11): 2707-2718.

[58]Chagué V, Danit L V, Siewers V, et al. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?[J]. Molecular Plant-Microbe Interactions, 2006, 19(1):33-42.

[59]Bogo A, Casa R T, Rufato L, et al. Ethylene inhibitor aminoethoxyvinilglycine on Glomerella leaf spot in apple cultivar ‘Royal Gala[J]. Ciência Rural, 2011, 41(6): 925-930.

[60]Meyer G D A, Rufato L, Sanhueza R M V, et al. The action of aminoethoxyvinylglycine (AVG) on apple (‘Maxi Gala) leaf abscission in plants infected by Glomerella leaf spot (Colletotrichum gloesporioides)[J]. Acta Horticulturae,2016,1119:43-48.

[61]Araújo L, Borsato L C, Valdebenito-Sanhueza Rˇ M,et al. Fosfito de potássio e ulvana no controle da mancha foliar da gala em macieira[J]. Tropical Plant Pathology, 2008, 33(3):74-80.

[62]Paulert R, Talamlnl V, Cassolato J E F, et al. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.)[J]. Journal of Plant Diseases and Protection, 2009, 116(6):263-270.

[63]Paulert R, Ebbinghaus D, Urlass C, et al. Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants[J]. Plant Pathology, 2010, 59(4):634-642.

[64]Jaulneau V, Lafitte C, Jacquet C, et al. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway[J]. Journal of Biomedicine and Biotechnology, 2010, 2010(2):525291.

[65]Cluzet S, Torregrosa C, Jacquet C, et al. Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp[J]. Plant Cell and Environment, 2004, 27(7):917-928.

[66]Tian S P, Wan Y K, Qin G Z, et al. Induction of defense responses against Alternaria, rot by different elicitors in harvested pear fruit[J]. Applied Microbiology and Biotechnology, 2006, 70(6):729-734.

[67]Yu C, Zeng L Z, Sheng K, et al. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit[J]. Food Chemistry, 2014, 159:29-37.

[68]Zhang Y, Shi X P, Li B H, et al. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry, 2016, 106:64-72.

[69]劉源霞, 兰进好, 柏素花,等. 苹果抗炭疽菌叶枯病基因SNP和InDel标记的HRM筛选[J]. 园艺学报, 2017, 44(2):215-222.

[70]Liu Y X, Li B H, Wang C H, et al. Genetics and molecular marker identification of a resistance to Glomerella leaf spot in apple[J]. Horticultural Plant Journal, 2016, 2(3):121-125.

[71]Liu Y X, Lan J H, Wang C H, et al. Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple[J]. Plant Breeding, 2017, 136(1):119-125.

[72]Liu Y X, Lan J H, Li Q, et al. Rapid location of Glomerella leaf spot resistance gene locus in apple by whole genome re-sequencing[J]. Molecular Breeding, 2017, 37(8):96.

[73]Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures[J]. Annual Review of Plant Biology, 2012, 63(3):451-482.

[74]Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11: 539-548.

[75]Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.

[76]Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology,2008,20(1):10-16.

[77]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324: 742-744.

[78]Altenbach D, Robatzek S. Pattern recognition receptors: from the cell surface to intracellular dynamics[J]. Molecular Plant-Microbe Interactions, 2007, 20(9): 1031-1039.

[79]Zipfel C. Early molecular events in PAMP-triggered immunity[J]. Current Opinion in Plant Biology, 2009, 12(4): 414-420.

[80]Abramovitch R B, Anderson J C, Martin G B. Bacterial elicitation and evasion of plant innate immunity[J]. Nature Reviews Molecular Cell Biology, 2006, 7: 601-611.

[81]Chisholm S T, Coaker G, Day B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.

[82]Narusaka Y, Narusaka M, Park P, et al. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum[J]. Molecular Plant-Microbe Interactions, 2004, 17(7): 749-762.

[83]Narusaka M, Shirasu K, Noutoshi Y, et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens[J]. Plant Journal, 2009, 60(2): 218-226.

[84]OConnell R, Herbert C, Sreenivasaprasad S, et al. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions, 2004, 17(3): 272-282.

猜你喜欢

病原学研究进展防治措施
视频宣教结合回授法对肺结核患者病原学阳性率的影响
中医外治法治疗功能性消化不良的研究进展
近十年国际STEM教育研究进展
微生物燃料电池在传感分析中的应用及研究进展
磷酸化肽富集新方法研究进展
浅析建筑地基不均匀沉降问题的防治措施
新生儿呼吸机相关性肺炎的临床高危因素及病原学状况分析
老年糖尿病医院获得性下呼吸道感染病原学与危险因素分析