右美托咪定预处理对LPS激活星形胶质细胞HMGB1基因表达的影响
2018-06-20陈筱诗肖莹莹周娇曾文强杨进国
陈筱诗 肖莹莹 周娇 曾文强 杨进国
[摘要] 目的 觀察右美托咪定(DEX)预处理对细菌脂多糖(LPS)激活的星形胶质细胞(AS)高迁移率族蛋白1(HMGB1)在基因水平表达的影响,探究其与烟碱样乙酰胆碱受体α7亚型(α7nAChR)的关系。 方法 选取新生1~2 d的SD大鼠,分离、培养大脑皮质AS。将细胞接种于细胞培养板上,按照随机数字表法分为空白对照组、LPS组、DEX预处理组、α银环蛇毒素(α-BGT,为α7nAChR拮抗剂)组和α-BGT预处理组。免疫细胞化学技术检测AS特异性标志物胶质纤维酸性蛋白(GFAP)的表达,甲基噻唑基四唑(MTT)法检测细胞活力,实时荧光定量PCR检测各组HMGB1的mRNA表达水平。 结果 第三代AS纯度达95%以上。活化的AS HMGB1 mRNA表达水平上调,与空白对照组比较差异有高度统计学意义(P < 0.01)。与LPS组比较,DEX预处理组HMGB1 mRNA表达明显降低(P < 0.01)。与DEX预处理组比较,α-BGT预处理有显著逆转DEX预处理的作用(P < 0.01),但是α-BGT单独作用于AS则对HMGB1基因表达并无影响(P > 0.05)。 结论 DEX预处理下调HMGB1表达,阻断α7nAChR后DEX预处理作用消失,提示DEX预处理的抗炎作用与其激活α7nAChR相关。
[关键词] 星形胶质细胞;脂多糖;右美托咪定;高迁移率族蛋白1;神经炎
[中图分类号] R741 [文献标识码] A [文章编号] 1673-7210(2018)04(c)-0008-05
Effect of Dexmedetomidine pretreatment on HMGB1 mRNA expression in LPS-stimulated astrocytes
CHEN Xiaoshi1 XIAO Yingying1 ZHOU Jiao2 ZENG Wenqiang1 YANG Jinguo1
1.Department of Anesthesiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China; 2.Department of Urology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China
[Abstract] Objective To investigate the effect of Dexmedetomidine pretreatment on the high mobility group box 1 (HMGB1) mRNA expression in lipopolysaccharide (LPS)-stimulated astrocytes (AS), and to explore its relationship with α7 subtype of nicotinic acetylcholine receptor (α7nAChR). Methods The new-born 1-2 day SD rats were selected, and the AS of cerebral cortex was isolated and cultivated. The cells were inoculated on cell culture plates, and they were divided into blank control group, LPS group, DEX-pretreatment group, α-bungatotoxin (α-BGT, which was α7nAChR antagonist) group and α-BGT-pretreatment group. The immunocytochemical technique was used to determine the expression of AS specific marker glial fibrillary acidic protein (GFAP). Methyl thiazolyl tetrazolium (MTT) was to used detect cytoactive. Real-time quantitative PCR was used to detect the mRNA expression levels of HMGB1. Results The purity of the 3rd generation of AS reached above 95%. The expression of AS HMGB1 mRNA was up-regulated, which had statistically significant differences compared with those of blank control group (P < 0.01). Compared with LPS group, the expression of HMGB1 mRNA in DEX-pretreatment group was decreased significantly (P < 0.01). Compared with DEX-pretreatment group, α-BGT-pretreatment had significant effects of reversing DEX-pretreatment (P < 0.01), while single application of α-BGT for AS had no significant effects on the expression of HMGB1 gene (P > 0.05). Conclusion Dexmedetomidine pretreatment can reduce the expression of HMGB1, the DEX-pretreatment effect disappears after cutting off α7nAChR, which indicates that the anti-inflammatory action of DEX-pretreatment may be related to activating α7nAChR.
[Key words] Astrocyte; Lipopolysaccharide; Dexmed?鄄etomidine; High mobility group box 1; Neuritis
在神经退行性疾病和脑卒中等疾病中,神经炎是其中一个重要的病理过程,涉及脑中小胶质细胞和星形胶质细胞(astrocyte,AS)的激活[1]。在神经系统与先天免疫系统相互作用对抗全身炎性反应的过程中,胆碱能抗炎通路起到重要的桥梁作用[2]。越来越多的证据表明,烟碱样乙酰胆碱受体α7亚型(α7nAChR)在介导胆碱能抗炎通路中扮演关键角色[3]。已知α7nAChR激活后抑制高迁移率族蛋白1(high mobility group box 1,HMGB1)的释放[4]。HMGB1是重要的晚期炎症介质,是阿尔兹海默病、帕金森病、脊髓损伤和脑出血等疾病的一个危险因子。有研究[5]指出,右美托咪定(DEX)通过迷走神经和α7nAChR依赖性机制抑制全身反应。我们假设DEX预处理通过激活AS表面α7nAChR下调HMGB1表达以缓解神经炎症,并用细菌脂多糖(LPS)刺激离体培养AS进行验证。
1 材料与方法
1.1 实验动物
SPF级新生1~2 d雄性Sprague-Dawley(SD)大鼠,由湖北医药学院动物实验中心提供(湖北省实验动物质量合格证号:42000900000625),饲养于标准实验环境中。所有动物实验通过湖北医药学院实验动物伦理委员会批准,并严格按照湖北医药学院动物实验规范执行。
1.2 大鼠皮质AS原代培养和传代
参照文献[6],取出生1~2 d内的SD大鼠,75%酒精浸泡消毒,断头取脑组织。在预冷PBS的培养皿中完整剥除脑膜和血管,获取大脑皮层。加入2 mL 0.25%的胰蛋白酶溶液,无菌巴氏吸管轻轻吹打后,37℃恒温水浴锅内消化30 min。加入2~3 mL完全培养基终止消化,悬液经过200目细胞滤网过滤后,4℃、1000 r/min,离心10 min(离心机型号:Eppendorf 5804R)。细胞重悬后,接种于T25细胞培养瓶中,在37℃、5%CO2细胞培养箱中培养。接种培养30 min后,小心翻转瓶底,吸取上清液至另一无菌培养瓶以去除成纤维细胞,继续培养。以后每3天换培养液。待培养的第7天左右(细胞覆盖率达80%左右时),将细胞培养瓶置于全自动恒温气浴摇床上,37℃、160 r/min,震荡16 h,以去除贴壁不牢的少突胶质细胞和小胶质细胞,所得贴壁较牢细胞即是AS。经胰酶消化重悬后,根据后续实验所需密度,接种于细胞培养瓶或者细胞培养板中继续培养。
1.3 GFAP免疫熒光细胞化学染色
用星形胶质细胞特异性标志物GFAP免疫荧光细胞化学染色法鉴定细胞。简要步骤如下:无菌镊子夹取24孔板圆形爬片,每孔1片,每孔接种细胞密度为5×105。待细胞覆盖率达80%左右,吸弃培养液,用预冷PBS洗3次,4%多聚甲醛4℃固定15 min。PBS洗涤后0.1% Triton-X-100破膜10 min,PBS漂洗3次,5 min/次。每孔加100 μL 10%山羊血清室温下封闭1 h。吸走封闭血清,每孔加200 μL一抗(兔抗GFAP抗体,PBS稀释至1/100)4℃过夜。PBS洗涤后加羊抗兔FITC-IgG荧光二抗(PBS稀释至1/400)在37℃避光孵育1 h。吸弃二抗后直接加DAPI染液(PBS稀释至1/1000),室温、避光孵育30 min。PBS漂洗后50%甘油-PBS封片。PBS代替一抗作为阴性对照。荧光显微镜下随机选择10个400×的目镜视野,进行荧光观察和拍照。计数总细胞数和GFAP阳性细胞数量,阳性细胞数占总细胞数的百分数即为AS的纯度。
1.4 实验分组
按照随机数法将细胞分为以下几组:空白对照组、LPS组、DEX预处理组、α银环蛇毒素(α-BGT)组和α-BGT预处理组,每组3个孔。空白对照组AS正常培养;LPS组用终浓度为0.10 μg/mL的LPS处理12 h;DEX预处理组用终浓度1 μmol/L的DEX刺激细胞30 min后,吸弃培养基加入新鲜完全培养基后,加入终浓度为0.10 μg/mL的LPS作用12 h;α-BGT组预先加入终浓度10 nmol/L的α-BGT,30 min后加入终浓度为0.10 μg/mL的LPS作用12 h;α-BGT预处理组的星形胶质细胞用终浓度10 nmol/L的α-BGT孵育30 min,加入1 μmol/L DEX孵育30 min,细胞换液后用0.10 μg/mL的LPS孵育12 h。
1.5 MTT法检测细胞活力
取第三代细胞按3×104接种于96孔板,每孔200 μL,置37℃、5%CO2细胞培养箱中培养,至细胞对数期时加入LPS处理相应时间。每孔加入MTT(贮存液浓度为5 mg/mL)20 μL,每时相点设置6个复孔,继续培养4 h。小心吸弃上清,每孔加入100 μL DMSO,避光震荡10 min,使结晶物充分溶解。以调零孔调零,在酶联免疫检测仪上测定各孔570 nm波长光吸收值(A570),重复3次。细胞活力=A实验孔/A对照孔×100%。
1.6 实时荧光定量PCR检测炎症介质的表达
按照Trizol法提取各组细胞总RNA,琼脂糖凝胶电泳验证总RNA的完整性。再根据反转录试剂盒说明书将RNA反转录成cDNA。反应体系中含有1.2 μg RNA、20 U逆转录酶、RNA酶抑制剂以及随机引物。PCR仪上70℃变性5 min,降至37℃后,继续程序:42℃、60 min,72℃、10 min。设计大鼠HMGB1和GAPDH引物,送上海生工生物工程技术有限公司合成。以cDNA为模板,HMGB1上游引物5′-CCGGATGCTTCTGTCAACTT-3′,下游引物5′-TTGATTTTTGG?鄄GCGGTACTC-3′,扩增产物的长度是248 bp。管家基因GAPDH用作对照,上游引物是5′-AGACAGCCGCATCTTCTTGT-3′,下游引物5′-CTTGCCGTGGGTAGAGTCAT-3′,扩增片段207 bp。实时荧光定量PCR的反应条件为:95℃预变性5 min,95℃变性10 s、60℃退火20 s、72℃延伸20 s进行40个循环,终末72℃延伸5 min。实验重复3次。反应结束后记录所得溶解曲线和扩增曲线的Ct值,2-ΔΔCt法计算所得结果。
1.7 统计学方法
应用SPSS 22.0对数据进行分析,计量资料采用均数±标准差(x±s)表示,组间比较采用单因素方差分析,两两比较采用SNK法,以P < 0.05为差异有统计学意义。
2 结果
2.1 AS培养与鉴定
取原代培养的AS,在倒置相差显微镜下观察,AS贴壁生长,细胞之间互相交联,折光度低。见图1a(封三)。GFAP主要定位在胞浆,染色阳性信号呈绿色,DAPI复染胞核呈蓝色激发光。结果显示星形胶质细胞的纯度达到95%以上。见图1b~d(封三)。
2.2 LPS处理对细胞增殖的影响
分别用0.01、0.10 μg/mL和1.00 μg/mL的LPS处理细胞6、12、24 h,结果如图2所示。0.01 μg/mL LPS对细胞增殖无明显影响;0.10 μg/mL的LPS处理后细胞活力明显降低,超过12 h后细胞活力显著降低;1.00 μg/mL的LPS对细胞损害明显。故后续实验中采用0.1 μg/mL的LPS处理细胞12 h。
2.3 DEX预处理降低HMGB1 mRNA水平
与空白对照组比较,LPS刺激后HMGB1 mRNA表达明显升高,差异有高度统计学意义(P < 0.01);与LPS组比较,DEX预处理组HMGB1 mRNA的表达显著降低(P < 0.01)。见图3。
与空白对照组比较,*P < 0.01;与LPS组比较,#P < 0.01;HMGB1:高迁移率族蛋白1;LPS:脂多糖;DEX:右美托咪定
2.4 DEX预处理降低HMGB1 mRNA水平与α7n?鄄AChR相关
与空白对照组比较,LPS组HMGB1 mRNA表达明显上调(P < 0.01)。与LPS组比较,DEX预处理组HMGB1 mRNA水平显著下降(P < 0.01),而α-BGT组和α-BGT预处理组HMGB1 mRNA水平与LPS组比较差异无统计学意义(P > 0.05);与DEX预处理组比较,α-BGT预处理组HMGB1 mRNA水平显著升高(P < 0.01)。见图4。
与空白对照组比较,*P < 0.01;与LPS组比较,#P < 0.01;与DEX预处理组比较,△P < 0.01;HMGB1:高迁移率族蛋白1;LPS:脂多糖;DEX:右美托咪定;α-BGT:α银环蛇毒素
3 讨论
神经炎被认为是Alzheimer病、帕金森病等慢性神经退行性疾病和脑卒中等的突出病理特征,主要由小胶质细胞和AS引起[1,7]。
HMGB1是一种非组蛋白染色体结合蛋白,正常情况下有两个主要来源:一是由受损或者坏死细胞释放,二是由巨噬细胞和小胶质细胞分泌[8]。在脑损伤和神经退行性疾病中,缺血神经元[9]、中枢小胶质细胞[10]和活化的单核/巨噬细胞[8]释放HMGB1,加速疾病进程[1],维持和延长炎症[8]。研究发现,星形胶质细胞也能释放HMGB1[11]。被动释放的HMGB1可作为神经炎症因子,引发神经细胞凋亡[12]。而在PD模型中的研究发现,HMGB1单克隆抗体可抑制HMGB1的易位,抑制小胶质细胞的激活、血脑屏障的损伤和炎症因子IL-6和IL-1β等的表达,保护多巴胺能神经元[13]。研究显示AS是Aβ下游神经毒性事件(如神经元死亡)的重要调节因素[14]。HMGB1特异性抗体能显著抑制神经元突起变性,模型小鼠认知障碍完全恢复[15]。近来发现,随着年龄增加,HMGB1在神经元中表达逐渐减少,而在AS中逐渐增加[16]。由此推测调控AS的HMGB1表达水平可能成为治疗以神经炎为病理特征的疾病的手段之一。
AS作为脑内最丰富的胶质细胞类型,介导神经炎起始和随后神经退行性疾病(如PD)的发展过程[17]。本研究使用LPS刺激体外培养的AS模拟神经炎,发现激活后的AS上调晚期炎性细胞因子HMGB1。因此,调控AS活化的药物可能发挥对神经的保护作用。有研究[18]报道肾缺血再灌注时DEX预处理有效抑制HMGB1表达,减轻缺血组织损伤。另外在心肌缺血再灌注中DEX预处理也下调HMGB1水平[19]。本研究发现DEX预处理下调LPS激活的AS中HMGB1的表达。
关于DEX预处理下调HMGB1表达的机制尚不是很清楚。研究[20]指出α7nAchR在胆碱能抗炎通路发挥重要作用。尼古丁,一种α7nAchR的强效激动剂,能显著降低盲肠结扎穿刺诱导的败血症模型小鼠血清HMGB1[21]。Kim等[22]研究发现尼古丁通过α7nAchR选择性降低促炎细胞因子和HMGB1水平。本研究中使用α7nAchR的拮抗剂α-BGT,DEX预处理下調HMGB1水平的作用被剥夺,提示DEX激活α7nAChR发挥抗炎作用。研究[23]指出,在脊髓损伤模型中,DEX预处理激动α7nAChR,从而下调HMGB1的分泌,动物运动评分增高;同时α7nAChR的拮抗剂上调HMGB1表达。因胫骨骨折导致神经炎的大鼠,DEX预先腹腔注射显著抑制炎性反应;而预先切断迷走神经或者应用该受体的拮抗剂,该效应即消失[24]。Xiang等[25]早期在内毒素血症模型发现拮抗α7nAChR后DEX对炎性细胞因子无抑制作用,说明α7nAChR是DEX发挥抗炎作用所必须的。由此推断DEX预处理发挥抗炎效应需要α7nAChR信号转导。
本研究为进一步认识DEX缓解神经炎提供了一定的证据,进一步带我们了解了DEX预处理与HMGB1表达之间的关系以及该联系与α7nAchR下游信号转导之间的关系,尚存在一些不足之处。已知大鼠皮层AS表达α2肾上腺素受体[26],研究[25]报道DEX激活中枢神经系统α2肾上腺素受体,激活胆碱能抗炎通路。因此我们不能排除DEX预处理下调HMGB1的表达可能与其激活α2肾上腺素受体相关这一可能性。此外,HMGB1能与Toll样受体(TLR2和TLR4)和晚期糖基化终产物受体(RAGE)结合,加剧炎性反应[27]。因此这些受体是否参与DEX预处理抑制HMGB1表达仍需进一步探索。
綜上,本研究发现DEX预处理通过激活α7n?鄄AChR进而下调LPS激活后的AS炎性细胞因子HMGB1的水平。因此,DEX不仅作为镇静药物,而且还可调控AS炎性细胞因子表达,发挥对神经炎的抑制作用,DEX可能对一些以神经炎为主要病理特征的疾病发挥有益的作用。
[参考文献]
[1] Ransohoff RM. How neuroinflammation contributes to neurodegeneration [J]. Science,2016,353(6301):777-783.
[2] Gallowitsch-Puerta M,Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway [J]. Life Sci,2007,80(24/25):2325-2329.
[3] Wang H,Yu M,Ochani M,et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation [J]. Nature,2003,421(6921):384-388.
[4] Wang H,Liao H,Ochani M,et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis [J]. Nat Med,2004,10(11):1216-1221.
[5] Xiang H,Hu B,Li Z,et al. Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway [J]. Inflammation,2014,37(5):1763-1770.
[6] McCarthy KD,Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol,1980,85(3):890-902.
[7] Carson MJ,Thrash JC,Walter B. The cellular response in neuroinflammation:The role of leukocytes,microglia and astrocytes in neuronal death and survival [J]. Clin Neurosci Res,2006,6(5):237-245.
[8] Gao HM,Zhou H,Zhang F,et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration [J]. J Neurosci,2011,31(3):1081-1092.
[9] Lee JH,Yoon EJ,Seo J,et al. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1 [J]. Mol Brain,2016,9(1):81.
[10] Xiong XX,Gu LJ,Shen J,et al. Probenecid Protects Against Transient Focal Cerebral Ischemic Injury by Inhibiting HMGB1 Release and Attenuating AQP4 Expression in Mice [J]. Neurochem Res,2014,39(1):216-224.
[11] Hayakawa K,Pham LD,Katusic ZS,et al. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery [J]. Proc Natl Acad Sci U S A,2012,109(19):7505-7510.
[12] Kim SW,Lim CM,Kim JB,et al. Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway [J]. Neurotox Res,2011,20(2):159-169.
[13] Sasaki T,Liu K,Agari T,et al. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson's disease [J]. Exp Neurol,2016,275(Pt 1):220-231.
[14] Garwood CJ,Pooler AM,Atherton J,et al. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture [J]. Cell Death Dis,2011, 2(6):e167.
[15] Fujita K,Motoki K,agawa K,et al. HMGB1,a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS,is a potential therapeutic target for Alzheimer's disease [J]. Sci Rep,2016,6:31895.
[16] Enokido Y,Yoshitake A,Ito H,et al. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain [J]. Biochem Biophys Res Commun,2008, 376(1):128-133.
[17] Farina C,Aloisi F,Meinl E. Astrocytes are active players in cerebral innate immunity [J]. Trends Immunol,2007, 28(3):138-145.
[18] Gu J,Sun P,Zhao H,et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice [J]. Crit Care,2011,15(3):R153.
[19] Zhang JJ,Peng K,Zhang J,et al. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway [J]. PLoS One,2017, 12(2):e0172006.
[20] Cui WY,Li MD. Nicotinic modulation of innate immune pathways via α7 nicotinic acetylcholine receptor [J]. J Neuroimmune Pharmacol,2010,5(4):479-488.
[21] Tsoyi K,Jang HJ,Kim JW,et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction [J]. Antioxid Redox Signal,2011,14(11):2057-2070.
[22] Kim TH,Kim SJ,Lee SM. Stimulation of the α7 nicotinic acetylcholine receptor protects against sepsis by inhibiting Toll-like receptor via phosphoinositide 3-kinase activation [J]. J Infect Dis,2014,209(10):1668-1677.
[23] Rong H,Zhao Z,Feng J,et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats [J]. Brain Behav Immun,2017,64:195-207.
[24] Zhu YJ,Peng K,Meng XW,et al. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model [J]. Brain Res,2016,1644:1-8.
[25] Xiang H,Hu B,Li Z,et al. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway [J]. Inflammation,2014,37(5):1763-1770.
[26] Hinojosa AE,García-Bueno B,Leza JC,et al. Regulation of CCL2/MCP-1 production in astrocytes by desipramine and atomoxetine:involvement of α2 adrenergic receptors [J]. Brain Res Bull,2011,86(5/6):326-333.
[27] Beijnum JR,Buurman WA,Griffioen AW. Convergence and amplification of toll-like receptor(TLR)and receptor for advanced glycation end products(RAGE)signaling pathways via high mobility group B1(HMGB1)[J]. Angiogenesis,2008,11(1):91-99.
(收稿日期:2017-12-18 本文編辑:张瑜杰)