纳米技术治疗脑胶质瘤的研究进展
2018-06-20扈丹丹刘肖莹李明慧彭海生
扈丹丹 刘肖莹 李明慧 彭海生
[摘要] 脑胶质瘤在临床治疗上是最具挑战性的疾病之一。虽然外科手术和多模式辅助治疗预后有所改善,但是脑胶质瘤的治疗仍然是一个难题。由于血脑屏障的存在和药物的毒性和非特异性,运用化疗药物治疗脑胶质瘤的疗效仍然特别差,纳米载体由于能够克服这些问题已经成为脑胶质瘤靶向治疗的最佳选择。过去的十年中,科研人员在脑肿瘤靶向治疗方面取得了重大研究进展。诊疗一体的纳米载体可同时对肿瘤进行特异性检测、治疗和后续监测。纳米技术的靶向给药策略在降低毒性和改善治疗效果方面具有独特的优势。本文介绍了胶质瘤的分类、治疗胶质瘤的局限性,以及如何应用纳米粒子靶向胶质瘤发挥治疗作用。
[关键词] 纳米技术;脑胶质瘤;血脑屏障;脂质体;胶束
[中图分类号] R739.41 [文献标识码] A [文章编号] 1673-7210(2018)04(c)-0025-03
Advances of nanotechnology in treatment of gliomas
HU Dandan LIU Xiaoying LI Minghui PENG Haisheng
Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Heilongjiang Province, Daqing 163319, China
[Abstract] Brain tumor is one of the most challenging diseases in treatment. Although surgery and multimodal adjuvant therapy serve to the treatment of this disease, treating brain cancer still remains as a challenge. Due to the non-specificity and the potentially toxic of drugs and the blood–brain barrier, the efficiency of drug in treating brain cancer is relatively low, and therefore nanoparticles become an alternative treatment forbrain cancer. During the past decades, there have been great developments in the area of brain tumor treatment adopting brain tumor-targeted method. For example, the nanocarriers can simultaneously carry out specific detection, treatment, and follow-up monitoring of the tumor. New treatment strategies with nanotechnology have some important advantages, for example decreased toxicity and improved therapeutic effect. In this paper, the classification of glioma, the limitations of treating glioma, and how to target glioma using nanoparticles are summarized in detail.
[Key words] Nanotechnology; Glioma; Blood brain barrier; Liposomes; Micelle
世界上每年新增大約有25万脑肿瘤和其他中枢神经系统肿瘤患者,其中约81%的脑胶质瘤是最常见、最典型的原发性脑瘤[1]。根据胶质细胞的类型进行分类,恶性胶质瘤是最常见的脑瘤。在成人中,这种疾病的发病率是(2~3)/10万,年龄在20~39岁的男性患者发病率较高[2]。尽管化疗、放疗和手术切除能在一定程度上缓解病情,但恶性胶质瘤仍然是一种致命的,平均生存期仅为14.6个月的疾病[3]。在脑胶质瘤治疗中令人失望的主要原因是药物摄取的内化、细胞内药物的降解、肿瘤对化疗的敏感性降低以及耐药细胞机制的不清。纳米技术是一种很有前途的脑肿瘤成像和治疗工具。纳米颗粒可用于基因治疗、光动力治疗、抗血管生成治疗和联合生物材料进行热疗。纳米成像技术也可用于早期检测癌细胞,它还可以重新规划术前和术中脑瘤的手术过程[4]。在纳米颗粒表面键合靶分子能增强其在肿瘤部位的亲和力和跨越血脑屏障的能力,这使纳米颗粒对脑癌的诊断和治疗更具有可行性[1,5]。
1 胶质瘤的分类
胶质瘤是中枢神经系统的异质原发性肿瘤。根据细胞谱系,它们可以分为星形胶质细胞、少突胶质细胞和混合肿瘤细胞[6]。根据世界卫生组织(WHO)的胶质瘤分类指南,将其分为纤维性星形细胞瘤(WHO GradeⅠ)、弥漫性低位胶质瘤(WHO GradeⅡ)、间变性胶质瘤(WHO GradeⅢ)和恶性胶质瘤(WHO GradeⅣ)[7]。
2 胶质瘤治疗的局限性
手术是恶性胶质瘤的主要治疗方式,然而它面临着许多局限性。首先,肿瘤组织切除术十分复杂,技术门槛很高;其次术后不佳的主要原因是肿瘤与健康组织区域界限不清。在手术切除的过程中,通过X线成像可以很容易地发现肿瘤组织整体轮廓,但在视觉上肿瘤与正常的脑组织是难以区分的[3,6]。由于周围组织与肿瘤部位存在相似性问题,不可能通过手术切除所有的脑瘤细胞,为复发留下了隐患[8]。胶质瘤的高度侵袭性和浸润性也是难以切除的原因[9]。血脑屏障是一种物理和生理的屏障,它是调节分子从系统循环进入脑实质的通路,是一种高选择性的物理/生物屏障[10-11]。血脑屏障主要是由毛细血管内皮与细胞间的紧密连接构成,与其他器官的血管内皮相比,脑毛细血管内皮细胞之间无窗孔,缺少胞饮作用的载体,并且由于某些酶的存在等原因,阻止了大部分药物进入脑内。血脑屏障的存在阻碍了脑胶质瘤的治疗,因此选择一种恰当的纳米粒子,穿透血脑屏障并准确地靶向肿瘤细胞尤其重要。
3 纳米技术及治疗脑胶质瘤
由于大多数抗肿瘤药物穿透血脑屏障的低渗透性,一般化学疗法效果较差。纳米技术的材料有很高的治疗选择性,通常广泛地应用于临床。纳米技术主要包括纳米材料和纳米粒子两大研究领域。纳米材料被广泛的应用于脑肿瘤的诊断和治疗。纳米粒子的类型包括:脂质体、胶束、树状大分子等。
3.1 运用脂质体治疗脑胶质瘤
脂质体是一种尺寸在纳米或微米大小、由一个或多个磷脂双分子层形成的封闭囊泡。由于其独特的物理化学特性,脂质体能够结合亲水性、疏水性的治疗药物。治疗药物的高剂量和特异性的组织靶向转运是一种有价值的临床治疗策略。因此设计脂质体药物递送系统的目的是提升肿瘤药物的治疗水平,同时减少药物的浪费。例如靶向脂质体包裹表阿霉素和塞来昔布,通过破坏肿瘤细胞的血管新生来实现治疗脑胶质瘤的效果。人们已经发现, 转铁蛋白受体和氯毒素修饰的聚乙二醇脂质体具有重要的治疗效果,它能显著地促进细胞转染,增加质粒DNA在血脑屏障的运输,然后靶向大脑神经胶质瘤细胞[12]。为实现转运药物通过血脑屏障,然后靶向脑胶质瘤发挥疗效,Zong等[13]合成了一种细胞穿透肽和转铁蛋白修饰的双靶向紫杉醇脂质体,体内外实验证明紫杉醇脂质体能显著增强实验动物的治疗效果。
3.2 运用胶束治疗脑胶质瘤
胶束的粒径大小在150 nm以下(优先考虑100 nm,一般胶束粒度30~50 nm),因此胶束可以躲避单核吞噬细胞系统,在肿瘤细胞内高速高效释放药物[14]。采用乳化溶剂蒸发法制备了载有卡莫司汀的T7肽共轭胶束。靶向效率研究表明T7肽修饰的胶束在肿瘤内的浓度高于非偶聯载体。与此同时,数据显示纳米粒度与治疗效果具有相关性。最小的纳米颗粒具有最佳的治疗效果,模型鼠体重减轻较少,存活时间明显延长[15]。Li等[16]发现20%胆碱衍生物-聚乙二醇-阿霉素胶束有良好的细胞摄取能力和抗肿瘤活性。20%胆碱衍生物-聚乙二醇-阿霉素胶束因降低心脏毒性而具有良好的耐受性。原位胶质瘤模型显示治疗组具有显著的抗肿瘤活性和最长的生存时间。研究结果表明对于胶质瘤的治疗20%胆碱衍生物-聚乙二醇-阿霉素胶束是一个潜在的抗肿瘤靶向制剂。
3.3 树状大分子治疗脑胶质瘤
树状大分子呈现出高度枝状的3D体系结构,包含一个引发核心和重复单元组成的许多内部层,以及多个活跃的表面末端基团[17]。树状大分子的表面基团和分子量决定进入细胞的动力[18-19]。Li等[20]设计了一种可以靶向转铁蛋白并载有他莫昔芬的树状大分子,同时它也是一种pH敏感、双重靶向修饰的药物载体。pH值为4的时候(在弱酸性生理环境下),药物释放量大,载体较稳定,并能准确的靶向肿瘤细胞,显著地提高脑胶质瘤的治疗效果。
3.4 运用金属纳米粒子治疗脑胶质瘤
功能化纳米粒子携带肿瘤特异性药物(如抗体或蛋白质),可进一步提高它们的肿瘤靶向能力。为寻找一种新的治疗策略来提高脑胶质瘤的患者生存率,研究人员对氧化铁纳米粒子、金纳米粒子、银纳米粒子开展了大量研究[21-22]。如Xu等[23]合成了具有超顺磁性氧化铁为核心的多功能纳米粒子,用聚乙二醇/聚乙烯亚胺/吐温80组成多功能外壳,以阿霉素为活性药物。包裹阿霉素的吐温80-磁性纳米粒子对C6细胞的摄取等体外实验表明,吐温80-磁性纳米粒子和包封的阿霉素能通过施加外部磁场的方式转运到胶质瘤,表明磁性靶向能更好地治疗脑胶质瘤。金纳米粒子具有独特的光学、化学、电及催化性能,且无毒[24-25]。Dixit等[26]设计了一种转铁蛋白肽包裹的金纳米粒子。他们的研究结果表明,金纳米粒子对治疗脑瘤具有可行性。与此同时,Liu等[19]发现,使用银纳米粒子联合放射治疗胶质瘤,可以发挥出促凋亡和抗增殖作用。
4 小结
纳米技术是一种新型的诊断和治疗脑胶质瘤的方法。纳米粒子可以修饰特殊的靶向配体,如抗体、糖类、多肽、叶酸等,这可能进一步增加肿瘤组织中纳米粒子的滞留和蓄积,起到准确靶向肿瘤细胞发挥疗效的作用。主动靶向纳米粒子除了配体的类型不同外,纳米粒子在体内的稳定性、粒子的形状和大小、配体密度等其他因素也在靶向治疗中发挥重要作用。此外,纳米粒子还装载了成像探针,用于诊断早期的疾病和手术实时监测,准确地切除肿瘤组织。在过去的20年里,一些纳米药物已经被批准用于临床,其中一些甚至已经成为治疗某些特定癌症的标准药物。纳米技术在胶质瘤治疗方面仍需继续研究,为胶质瘤的治疗提供新的希望。
[参考文献]
[1] Saenz del Burgo L,Hernandez RM,Orive G, et al. Nanotherapeutic approaches for brain cancer management [J]. Nanomedicine:Nanotechnology,Biology,and Medicine,2014,10(5):905-919.
[2] Marie SK,Shinjo SM. Metabolism and brain cancer [J]. Clinics (Sao Paulo),2011,66(Suppl 1):33-43.
[3] Bhojani MS,Van Dort M,Rehemtulla A,et al. Targeted ima?鄄ging and therapy of brain cancer using theranostic nano?鄄particles [J]. Molecular Pharmaceutics,2010,7 (6):1921-1929.
[4] Orive G,Ali OA,Anitua E,et al. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging [J]. Biochimicaet Biophysica Acta,2010,1806(1):96-107.
[5] Xu HL,ZhuGe DL,Chen PP,et al. Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma [J]. Drug Delivery,2018, 25 (1):364-375.
[6] Gao X,Jin W. The emerging role of tumor-suppressive mic?鄄roRNA-218 in targeting glioblastoma stemness [J]. Cancer Letters,2014,353(1):25-31.
[7] Bredlau AL,Dixit S,Chen C,et al. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma [J]. Current neur?鄄opharmacology,2017,15(1):104-115.
[8] Xie Z,Shen Q,Xie C,et al. Retro-inverso bradykinin opens the door of blood-brain tumor barrier for nanocarriers in glioma treatment [J]. Cancer Letters,2015,369(1):144-151.
[9] Zhang F,Mastorakos P,Mishra MK,et al. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers [J]. Biomaterials,2015,52:507-516.
[10] Kim SS,Harford JB,Pirollo KF,et al. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells:the promise of nanomedicine [J]. Biochemical and Biophysical Research Communications,2015,468 (3):485-489.
[11] Su B,Wang R,Xie Z,et al. Effect of retro-inverso isomer of bradykinin on size-dependent penetration of blood-brain tumor barrier [J]. Small,2018,14(7). doi: 10. 1002/smll.201702331
[12] Yue PJ,He L,Qiu SW,et al. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma [J]. Molecular Cancer,2014,13(7):191.
[13] Zong T,Mei L,Gao H,et al. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals [J]. Molecular Pharmaceutics,2014,11(7):2346-57.
[14] Miller T,Hill A,Uezguen S,et al. Analysis of immediate stress mechanisms upon injection of polymeric micelles and related colloidal drug carriers: implications on drug targeting [J]. Biomacromolecules,2012,13(6):1707-1718.
[15] Bi Y,Liu L,Lu Y,et al. T7 Peptide-Functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma [J]. ACS Appl Mater Interfaces,2016. [Epub ahead of print]
[16] Li J,Yang H,Zhang Y,et al. Choline derivate-modified doxorubicin loaded micelle for glioma therapy [J]. ACS Applied Materials & Interfaces,2015,7:21589-21601.
[17] Hu J,Hu K,Cheng Y. Tailoring the dendrimer core for efficient gene delivery [J]. Acta Biomaterialia,2016,35:1-11.
[18] Xu L,Zhang H,Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics [J]. ACS Chem?鄄ical Neuroscience,2014,5:2-13.
[19] Liu P,Huang Z,Chen Z,et al. Silver nanoparticles: a novel radiation sensitizer for glioma[J]. Nanoscale,2013, 5(23):11829-11836.
[20] Li Y,He H,Jia X,Lu WL,et al. A dual-targeting nano?鄄carrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain glio?鄄mas [J]. Biomaterials,2012,33(15):3899-3908.
[21] Brunetti V,Bouchet LM,Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems [J]. Nanoscale,2015,7(9):3808-3816.
[22] Zheng M,Wang S,Liu Z,et al. Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells [J]. Materials Science & Engineering C,Materials For Biological Applications,2018,83:44-50.
[23] Xu HL,Mao KL,Huang YP,et al. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects [J]. Nanoscale,2016,8(29):14222-14236.
[24] Kumar D,Saini N,Jain N,et al. Gold nanoparticles:an era in bionanotechnology [J]. Expert Opinion on Drug Delivery,2013,10:397-409.
[25] Kodiha M,Wang YM,Hutter E,et al. Off to the organ?鄄elles-killing cancer cells with targeted gold nanoparticles [J]. Theranostics,2015,5(4):357-370.
[26] Dixit S,Novak T,Miller K,et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors [J]. Nanoscale,2015,7(5):1782-1790.
(收稿日期:2018-01-25 本文編辑:苏 畅)