圆锥曲线参数方程在高中数学解题中的应用初探
2018-05-14孝思琪
孝思琪
在传统的数学课堂教学过程中,很多的学生尽管能够明确圆锥曲线参数方程的相关知识,但是在运用方面存在很大程度的困难,这样很容易导致学生的知识存在纸上谈兵的问题。为此必须要加强学生圆锥曲线参数方程的运用与分析,进一步帮助学生了解圆锥曲线参数方程的相關知识,并且能够巧妙的了解圆锥曲线参数方程的具体作用,加强学生对于数学知识的兴趣爱好,提高教学的作用于水平。
1 圆锥曲线参数方程在高中数学解题中的应用意义
圆锥曲线参数方程就是指椭圆形双曲线或者圆锥曲线上的点与两个交点之间的关系。在解题过程中,通过对椭圆定义、双曲线定义以及圆锥曲线定义进行清楚的分析,能够有效进行快速的等价转换,强化学生的数学结合思想。并且也能够实现由点到面的分析,帮助教学的深层次推进,提高学生在圆锥曲线参数方程方面的理解,促进数学解题的水平不断提升。
2 圆锥曲线参数方程在高中数学解题中的应用技巧
2.1 把握创新思维
在传统数学教学过程中,通常会让学生不断的进行数学题练习来获得大量的素材,并且通过熟能生巧的方式来让学生快速的判断题型,帮助学生进行解题。但是从目前来看,这样的方法不仅给学生造成了很大的学习压力,而且不利于学生培养数学思维。所以必须要注重对于经典题型的练习,帮助学生通过掌握一道经典例题来实现举一反三的效果,提高学生对于数学知识的理解,也能够有效加强学生对于数学的感知能力,促进学生的数学成绩不断提升。例如通过运用圆锥曲线方程的方式,能够解决高中数学最常见的最值问题,这样的方法不仅快速高效,而且可以避免学生出现漏洞强化学生的自主探索能力,也能够以学生为中心,避免低质量的数学练习,提高学生的学习效率。
在高中数学学习的过程中,对于学生的逻辑思维提出了更高的挑战,尤其是必须要帮助学生能够结合实际解决问题,充分发挥数学的应用性。所以在这一过程中,必须要加强学生对于探索思维的培养,可以通过小组结合的方式提高学生的数学解题能力。例如通过运用圆锥曲线参数方程能够针对复杂的题目进行简化,充分的帮助学生进行积极有效的探索,从而选择最佳的学习方式,并且加强对于学生基础知识的把握与理解,提高学生学习的效果。
2.3 自主学习能力的培养
在高中阶段,由于课时紧、任务重,教师不可能对所有的学生都进行面面俱到的讲解,所以必须要培养学生的自主学习能力。只有加强自主学习能力,才能够及时有效的发现自身存在的问题,并且通过恰当的方式加以解决,促进学生的学习水平不断提高。在高中数学教学过程中,通过学生对于综合思维的养成,能够有效的利用最优的解题方法进行解答。学生在自主学习的过程中,如果遇到问题,不应该立即向老师求助,而应该通过自身对于相关知识的研究通过自主探究的方法,针对问题进行分析,不断促进自身的数学水平得到提高。
3 圆锥曲线参数方程在应用过程中应该注意的问题
在运用圆锥曲线参数方程的过程中,学生必须要学会综合运用不能够简单的拘泥于某一种解题方式。只有通过灵活的方式转换,才能够提高自身对于数学知识的灵活掌握,并且在最短的时间内选择最恰当的解题方法,也能够有效的提高解题的水平,保证答案的准确性。
在运用圆锥曲线参数方程的过程中,必须要加强对于基础知识的掌握,明白万变不离其宗的道理,无论题型怎么样的变化都应该要牢牢的基于圆锥曲线基础参数方程进行分析。要增强学生对于知识的灵活运用能力,注重多写、多练、多记、多问,从而充分的打下基础知识。在解题的过程中,快速的寻找到题目中的有效信息,排除干扰项,找准问题的关键。
结论:本文通过圆锥曲线参数方程,在高中数学解题中的应用进行分析,能够进一步加强学生对于圆锥曲线参数方程的认识与了解,并且牢牢打下基础。通过对于学生基础知识的综合运用,结合经典例题的分析,能够有效促进学生掌握举一反三的能力,让学生的数学成绩在不知不觉的过程中不断提高。
(作者单位:山东滨州实验中学)