M型超群分类问题的研究
2018-05-14钟育彬黄永业
钟育彬 黄永业
摘 要: 对H.S.Wall提出基于运算提升的超群作了进一步的研究:首先定义了子核的概念;然后利用子核在超群上建立等价关系,得到等价类;最后通过陪集分解,解决了M型超群的分类问题。
关键词: 超群; 等价关系; 陪集; 分类
中图分类号: O 152 文献标志码: A 文章编号: 1671-2153(2018)03-0086-03
4 结束语
本文沿着近世代数中关于群论的思维脉络和知识体系,将群论中对群的分类思想推广到超群系统中,解决了M型超群的分类问题。首先定义了子核的概念,然后利用子核在超群上建立等价关系,得到等价类,最后通过陪集分解实現对M超群的分类,同时证明了相关的性质定理。超群的陪集分解,不仅解决了M型超群的分类问题,而且为今后研究超群商集的相关性质奠定了理论基础。
参考文献:
[1] WALL H S. Hypergroups[J]. American Journal of Mathematics,1937,59(1):77-98.
[2] ORE O. Theory of multigroups[J]. American Journal of Mathematics,1938,60(3):705-733.
[3] VOUGIOUKLIS T,KONGUETSOF L. P-hypergroupes.[J]. Acta Univ.carolin.math.phys,1987,28(1):15-20.
[4] MASSOUROS C G. Hypergroups and convexity[J]. 1989(4):7-26.
[5] JANTOSCIAK J. Transposition hypergroups:Noncommutative join spaces[J]. Journal of Algebra,1997,187(1):97-119.
[6] DAVVAZ B. Isomorphism theorems of polygroups[J]. Bulletin of the Malaysian Mathematical Society,2010,3(3):385-392.
[7] 张禾瑞. 近世代数基础-修订本[M]. 北京:人民教育出版社,1978:61-69.
[8] 裴定一,郭华光. 近世代数[M]. 北京:高等教育出版社,2009:38-41.
Abstract: In this paper, we mainly study the hypergroup based on operation upgrade proposed by H.S.Wall. Firstly, the concept of subnucleus is defined; then the equivalent relation is established by subnucleus on the hypergroup, and the equivalent class is obtained; finally, the classification problem of the M?蛳hypergroup is solved by coset decomposition.
Keywords: hypergroup; equivalence relation; coset; classification
(责任编辑:徐兴华)