小分子热激蛋白参与植物抗逆性方面的研究进展
2018-05-14王敏江彪林毓娥彭庆务刘文睿梁肇均何晓明
王敏 江彪 林毓娥 彭庆务 刘文睿 梁肇均 何晓明
摘要 小分子热激蛋白(sHSPs)是植物面临逆境胁迫时,被激活且表达增强的一类蛋白,属于热激蛋白的一个亚家族。sHSPs作为分子伴侣,在植物抵抗高温热害、低温冷害以及种子发育中具有重要的作用。综述了sHSPs的分类、特点和功能,重点讲述了其参与植物抗逆性方面的研究进展,对目前研究中存在的问题进行了讨论,并对今后的研究方向进行了展望。
关键词 小分子热激蛋白;抗逆性;功能
中图分类号 S188 文献标识码
A 文章编号 0517-6611(2018)18-0029-04
Advances of Small Heat Shock Proteins Participating in Plant Resistance
WANG Min1,2,JIANG Biao1,2,LIN Yue1,2 et al (1.Vegetable Research Institute of Guangdong Academy of Agricultural Sciences,Guangzhou,Guangdong 510640;2.Key Laboratory of Guangdong Vegetable New Technology Research,Guangzhou,Guangdong 510640)
Abstract sHSPs,a subfamily of heat shock proteins,are activated and highly expressed when plants exposed to adverse stresses.As a molecular chaperone,sHSPs play crucial roles in the resistance of heat,cold and seed development.The classification,characteristics and function were reviewed,especially the role in plant resistance.And related problems in the current study were discussed and the future research fields were prospected.
Key words Small heat shock proteins;Stress resistance;Function
非生物胁迫因子,如干旱、盐渍化、高低温以及化學污染物等,会引起植物细胞破坏和次生代谢物的产生[1]。高温会影响植物的代谢系统,特别是细胞膜的稳定性和生理过程,如光合作用、蒸腾作用等,而植物通过增强分子伴侣的转录和信号转导,释放活性氧(ROS),合成抗氧化物质,积累渗透调节物质[2]。由于高温胁迫而产生的热激蛋白(heat shock proteins,HSPs)[3],又被称为“逆境诱导的蛋白”或“逆境蛋白”[4-6],几乎存在于所有的生物体内,且高度保守[6],正常条件下的含量较低(低于蛋白总量的5%),但在外界环境不利条件刺激时,会大量合成(约占蛋白总量的15%)[7]。其中,小分子热激蛋白(sHSPs)属于热激蛋白的一个亚家族,其作为分子伴侣,在植物抵抗高温热害、低温冷害以及种子发育中具有重要的作用。笔者综述了sHSPs的特点、分类和生物功能,对其参与植物抗逆性方面的研究进展进行了重点描述,对目前研究中存在的问题进行了讨论,并对今后的研究方向进行了展望。
1 热激蛋白的特点
据报道,意大利科学家Ritossa将果蝇放在高温环境下研究其基因和蛋白质变化时,首先发现了热激蛋白[8]。随后,在几乎所有的生物中均发现了热激蛋白[9],且其羧基端有一个被称为“heat-shock”的结构域[10]。热激蛋白的分子量为10~200 kD,在热胁迫时,作为分子伴侣参与信号的传导[11]。植物热激蛋白根据分子量大小,可以分为HSP60、HSP70、HSP90、HSP100和小分子HSP家族(sHSPs)[11-13]。不同植物中的热激蛋白的数目差异较大[14],例如,在拟南芥中有13个HSP20、8个HSP70、7个HSP90、8个HSP100以及21个热激蛋白转录因子(Hsfs)[15],但是在番茄中有15个Hsfs[16]。
小分子热激蛋白(sHSPs)的分子量为12~43 kD,且大部分蛋白的C端都包含1个80~100个氨基酸序列的α-晶体蛋白(ACD)结构域[17-18]。高等植物中含有20种以上的sHSPs[19]。sHSPs在正常的生长条件下是检测不到的,但逆境条件能激活其表达[20-22]。热激蛋白的特点一般包括保守性,反应短时性,影响因素多样性,交叉耐受性以及种类多样性[23]。一般情况下,生物胁迫和非生物胁迫均可以诱导小分子热激蛋白的表达,其中高温胁迫是最主要的因素[24]。有研究表明,正常条件下,sHSPs的含量很低,但是高温胁迫时,在短时间内含量急剧增加,且种类比其他热激蛋白多[7,25]。
2 小分子热激蛋白的分类
sHSPs具有丰富的功能和遗传多样性[26],在生物体应对生物或非生物胁迫中,能够维持天然蛋白的稳定性,并在保护膜结构等方面发挥重要的作用。小分子热激蛋白在高等植物中极为丰富,且为核基因编码,分布在细胞的各个部位[27]。根据蛋白的亚细胞定位和氨基酸序列的同源性可以将植物的sHSPs分为5个大的亚家族:①定位在细胞质或细胞核的CⅠ、CⅡ、CⅢ、CⅣ、CⅤ、CⅥ和CⅦ亚家族;②定位于线粒体的MⅠ和MⅡ亚家族;③定位于质体的P亚家族;④定位于内质网的ER亚家族;⑤定位于过氧化物酶体的Po亚家族[28-29]。
不同植物中,小分子热激蛋白的种类和数目也各异,这可能与植物的种类以及生活习性有关。在拟南芥中有19个sHSPs基因,其中定位在细胞质/细胞核中的sHSPs有13个,定位在内质网中和过氧化物酶体中的sHSP各1个,定位在线粒体和叶绿体中的sHSPs各2个[21]。在水稻中鉴定出了23个sHSPs基因,分布在不同细胞器中的sHSPs个数也不尽相同[30]。其他作物中,大豆中有51个sHSPs基因[31],大白菜[32]和小麦中[33]各自至少有27个sHSPs基因,番茄中至少有42个sHSPs基因[34],辣椒的至少有35个sHSPs基因[35]。虽然不同作物的sHSPs数目差异较大,但是相同点是定位于细胞质/细胞核中的sHSPs所占比例较大。
3 小分子热激蛋白的功能
任何蛋白的功能都是由其构造和三维结构的折叠方式所决定的[36]。热激蛋白(HSPs)能够保护细胞免受伤害,帮助蛋白质折叠[25]。sHSPs发挥其分子伴侣的作用,形成的聚合体能够与体内受胁迫后产生的损伤蛋白相结合以防止它们聚集;在ATP 存在的条件下与HSP100或HSP70相互作用,帮助受损蛋白重新折叠,恢复其生物功能[17-18]。
3.1 分子伴侣,防止蛋白降解 作为分子伴侣,在所有的动植物中,sHSPs能调控蛋白质的折叠、积累及其定位和降解[37-40]。在依赖ATP酶的条件下,能够识别并结合到未展开的蛋白质,从而抑制蛋白质的聚集,这样可以保护细胞不受高温伤害,且能够修补被损伤的蛋白质[41]。豌豆的sHSP18.1能够结合到未展开的蛋白质,并与其他热激蛋白如HSP70或HSP100作用,形成复合体,以维持蛋白的正常结构和功能[42]。
3.2 参与种子发育 有研究表明,sHSPs在玉米种子发育过程中大量表达,例如HSP60和HSP70 热激蛋白[43]。另外,贮藏的种子暴露于过热的环境中,会产生一系列的细胞代谢反应,一些正常的蛋白质合成会减少,但小分子热激蛋白的含量会显著升高[44-45]。过表达AtHSP22.0基因后,拟南芥种子耐受衣霉素胁迫的能力明显提高,种子萌发率明显高于野生型[46]。细胞质CI型小热激蛋白(sHSP)在种子的胚胎形成以及成熟过程中表达量均会升高[47]。另外,小分子热激蛋白可以减轻番茄种子萌芽对光照的依赖性[48]。Ca2+-CaM在热激信号转导中通过激活热激转录因子的DNA结合活性来实现[49]。研究表明,热激后,拟南芥AtCaM3基因的表达水平明显升高,说明该基因可能参与了热激信号转导[50]。
3.3 参与植物抗逆性 sHSPs在植物面临生物胁迫和非生物胁迫时发挥着重要的作用,且抗胁迫能力具有多样性[6]。但目前研究较多的是sHSPs在植物面临高温、低温和盐渍化等非生物胁迫下起的作用(表1)。
3.3.1 耐热性。高温胁迫下,植物的生长缓慢,光合效率下降,叶绿体的小分子热激蛋白(CPsHSP)作为细胞质体中含量最丰富的热激蛋白[19,26],在植物遇到热胁迫时,它对参与光合作用的细胞器有保护作用[51],因为CPsHSP的生成可以减轻光系统 Ⅱ(PS Ⅱ)的光抑制[52],且同种植物的不同基因型中,耐热性的强弱与CPsHSP的表达水平有关[53]。另外,CPsHSP在植物遇到高温胁迫时可以保護叶绿体膜,与膜结合,并稳定细胞的膜结构[54-55]。研究者通过转基因试验也验证了CPsHSP在热胁迫中的作用。高温胁迫时,在烟草中过量表达CPsHSPs可以增加光系统 Ⅱ 的稳定性[56]。番茄的CPsHSPs只有在高温胁迫下(47 ℃)才会对PS Ⅱ起到保护作用,但是在常温下(25 ℃)没有此作用[57]。小分子热激蛋白在水稻中的过表达能够显著提高转基因植物的耐热性。研究表明,在水稻中过表达小分子热激蛋白基因sHSP17.7可以增强转基因植物的耐热性和对B类紫外线的抗性[58],另外还发现该基因在水稻的抗旱中也起到重要作用[59]。水稻OsHSP18.6的转基因植物的耐热性和抵抗其他非生物胁迫的能力明显提高[60]。RNAi干扰水稻OsHSP18.0降低了植物对细菌的抗性,以及耐热性和耐盐性[61]。过表达线粒体的热激蛋白基因可以明显抑制植物的细胞程序性死亡PCD反应[62]。小分子热激蛋白之间可以发生相互作用,如水稻HSP17.7可以与HSP16.9A互作,从而形成复合体参与植物的耐热反应[63]。
线粒体的sHSPs在植物耐热性方面发挥了重要的作用,其可以保护光系统 Ⅱ 蛋白质复合物不受损伤,保证细胞正常的电子传递、ATP 合成,使得植物在高温胁迫下保持正常生长[64]。研究表明,番茄线粒体HSP22蛋白的积累可以提高其细胞的抗氧化胁迫能力和适应性[65]。研究者将辣椒的小热激蛋白基因CaHSP24进行了分子克隆和逆境表达分析,发现该基因在非生物胁迫下的表达量明显上升,说明该基因参与了植物的逆境响应[66]。另外,将辣椒的CaHSP26基因在拟南芥中异位过表达,可以增强转基因植物耐热能力[67]。内质网小分子热激蛋白在高温下的表达量会显著升高,例如番茄的LeHSP21.3和拟南芥的AtHSP22.0对高温有一定的抵御作用[68-69]。在烟草中过表达甜椒细胞质小分子热激蛋白基因CaHSP26可以显著提高转基因植物的耐热能力[70]。花生的小热激蛋白基因(sHSP)的诱导表达可以增强其在高温下的生理性适应能力[71]。有研究者结合高温胁迫下的牡丹的转录组测序,确定了小热激蛋白参与牡丹对高温的抵抗能力[72]。
3.3.2 耐冷性与抗旱性。低温环境会诱导一些蛋白的表达,包括脱水蛋白[73]、热稳定蛋白[74]和热激蛋白[75]等,这些蛋白可以在一定程度上减缓低温给植物造成的伤害。低温可以诱导番茄叶片中线粒体小热激蛋白的表达[68]。过表达叶绿体小分子热激蛋白可以增强番茄植物的耐冷性[76]。研究报道,内质网小热激蛋白的积累可以增强桑树对于寒冷季节的低温驯化能力[77]。绿豆苗经过热激后产生的热激蛋白可以在一定程度上增强植物对低温的抗性[78]。与此类似,有研究者将经过热激的番茄放到低温环境中,发现经过热激处理的番茄较对照的耐低温能力增强[79]。关于sHSP提高植物耐冷性的原因,一方面可能是因为其可以提高细胞膜的流动性,另一方面可以与细胞膜结合相互作用,从而保护膜系统的完整性,增强植物的耐冷能力[55]。
研究表明,拟南芥中过表达AtHSP17.6A可以增强植物的耐盐和抗旱能力[80]。也有研究表明,在拟南芥中异位过表达百合的小分子热激蛋白基因LimHSP16.45,通过阻止不可逆蛋白的聚集和清除细胞内的活性氧等途径,提高转基因植物对逆境胁迫的抵抗能力[81]。植物在缺水逆境条件下,会破坏细胞质膜分子排列,改变膜的透性,影响其正常代谢过程;研究表明植物在抵抗高温和抗旱的机制上会存在一定的交叉性[82]。研究表明,干旱敏感突变株的小分子热激蛋白基因HSP17.4表达量很低,热诱导后HSP17.4大量表达,并提高了拟南芥的抗旱性,表明小热激蛋白HSP17.4在干旱胁迫下同样可以通过保护细胞组分,使植物维持生长发育[83]。
3.3.3 其他。有研究表明,紫花苜蓿的小熱激蛋白基因(MsHSP17.7)在高温、高盐、氧化胁迫以及干旱环境中均可以被诱导表达,且MsHSP17.7过表达转基因植物可以显著提高植物对高盐胁迫的抗性能力,表明该基因在植物抵抗盐渍化胁迫方面具有重要的作用[84]。研究者在番茄中分离了内质网小热激蛋白基因(ERsHSP),过表达该基因的转基因植物的抗衣霉素能力较对照显著增强,说明该基因可以在一定程度上减轻外界给内质网带来的胁迫压力[85]。通过将水稻的OsMSR3基因(小热激蛋白的家族I成员之一)在拟南芥中异位表达,可以增强其对镉(Cd)的抵抗性[40]。
4 存在问题与展望
近年来,不同的非生物胁迫因素严重影响了植物的生长与发育。增强植物本身的抗逆能力以及选育优良的抗逆品种是提高抗胁迫性的主要途径。植物对高温以及其他逆境胁迫响应也是一个多基因控制的复杂的生物过程,许多研究已证明小热激蛋白能够在植物面临逆境胁迫时激活表达,通过分子伴侣功能保护正常的蛋白免被降解,维持植物生长与发育。虽然sHSPs在许多植物中已经被报道,但大部分是围绕过表达量的变化来改变植物抗逆性方面,sHSPs如何提高植物的抗性,具体通过什么信号途径尚不清楚。
因此,今后关于小分子热激蛋白的研究方向主要集中在以下方面:①挖掘与鉴定新的小分子热激蛋白基因,丰富sHSPs家族;②筛选与sHSPs互作的蛋白,深入研究其机制;③鉴定小分子热激蛋白转录因子的靶蛋白,了解其在植物抗逆性方面的遗传网络;④分析定位在细胞不同位置的sHSPs蛋白的进化和分子关系,为植物的耐热性分子辅助育种提供理论指导。
参考文献
[1]
WANG W X,VINOCUR B,ALTMAN A.Plant responses to drought,salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J].Planta,2003,218(1): 1-14.
[2] WAHID A,GELANI S,ASHARF M,et al.Heat tolerance in plants:An overview[J].Environ Exp Bot,2007,61(3): 199-223.
[3] FEDER M E,HOFMANN G E.Heatshock proteins,molecular chaperones,and the stress response:Evolutionary and ecological physiology[J].Annu Rev Physiol,1999,61:243-282.
[4] LINDQUIST S,CRIG E A.The heatshock proteins[J].Annu Rev Genet,1988,22:631-677.
[5] MORIMOTO R I,TISSIERES A,GEORGOPOULOS C.Heat shock proteins:Structure,function and regulation[M].NY:Cold Spring Harbor Lab.Press,Cold Spring Harbor,1994.
[6] GUPTA S C,SHARMA A,MISHRA M,et al.Heat shock proteins in toxicology:How close and how far?[J].Life Sci,2010,86(11/12):377-384.
[7] SWINDELL W R,HUEBNER M,WEBER A P.Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and nonheat stress response pathways[J].BMC Genomics,2007,8:125.
[8] RITOSSA F.A new puffing pattern induced by temperature shock and DNP in drosophila[J].Experientia,1962,18(12):571-573.
[9] BHARTI K,NOVER L.Heat stressinduced signaling[M] //SCHEEL D,WASTENACK C.Plant signal transduction:Frontiers in molecular biology.Oxford,UK:Oxford University Press,2002:74-115.
[10] HELM K W,LAFAYETE P R,NAGO R T,et al.Localization of small heat shock proteins to the higher plant endomembrane system[J].Mol Cell Biol,1993,13(1):238-247.
[11] SCHOFFL F,PRANDL R,REINDL A.Molecular responses to heat stress[M] //SHINOZAKI K,YAMAGUCHISHINOZAKI K.Molecular responses to cold,drought,heat and salt stress in higher plants.Austin,Texas:R.G.Landes Co.,1999: 81-98.
[12] KOTAK S,LARKINDALE J,LEE U,et al.Complexity of the heat stress response in plants[J].Curr Opin Plant Biol,2007,10(3):310-316.
[13] VIERLING E.The roles of heat shock proteins in plants[J].Annual review of plant physiology and plant molecular biology,1991,42: 579-620.
[14] HAMILTON E W,HECKATHORN S A,DOWNS C A,et al.Heat shock proteins are produced by fieldgrown naturally occurring plants in the summer in the temperate northeast US Bulletin of the Ecologic[J].Soc Am,1996,77: 180.
[15] SWINDELL W R,HUEBNER M,WEBER A P.Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and nonheat stress response pathways[J].BMC Genomics,2007,8:1-15.
[16] VON KOSKULLDRING P,SCHARF K D,NOVER L,The diversity of plant heat stress transcription factors[J].Trends Plant Sci,2007,12(10):452-457.
[17] WANG W X,VINOCUR B,SHOSEYOV O,et al.Role of plant heatshock proteins and molecular chaperones in the abiotic stress response[J].Trends in plant science,2004,9(5):244-252.
[18] HASLBECK M,FRANZMANN T M,WEINFURTNER D,et al.Some like it hot:The structure and function of small heatshock proteins[J].Nature structural & molecular biology,2005,12(10):842-846.
[19] AlWHAIBI M H.Plant heatshock proteins:A mini review[J].Journal of King Saud University(Science),2011,23(2):139-150.
[20] HAMILTON E W,HECKATHORN S A.Mitochondrial adaptations to NaCl.Complex I is protected by antioxidants and small heat shock proteins,whereas complex II is protected by proline and betaine[J].Plant Physiol,2001,126:1266-1274.
[21] SCHARF K D,SIDDIQUE M,VIERLING E.The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alphacrystallin domains (Acd proteins)[J].Cell stress & chaperones,2001,6(3):225-237.
[22] ZHANG J H,WANG L J,PAN Q H,et al.Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses[J].Scientia horticulturae,2008,117(3):231-240.
[23] 鄧家术,段彬江,刘中来.植物热激蛋白的研究进展及其应用[J].生命的化学,2003,23(3): 226-228.
[24] MAIMBO M,OHNISHI K,HIKICHI Y,et al.Induction of a small Heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum[J].Plant physiology,2007,145(4):1588-1599.
[25] MORIMOTO R I,TISSIèRES A,GEORGOPOULOS C.The biology of heat shock proteins and molecular chaperones[M].NY: Cold Spring Harbor Laboratory Press,1994:457-494.
[26] WATERS E R,LEE G J,VIERLING E.Evolution,structure and function of the small heat shock proteins in plants[J].J Exp Bot,1996,47(3):325-338.
[27] SUN W N,VAN MONTAGU M,VERBRUGGEN N.Small heat shock proteins and stress tolerance in plants[J].Biochimica et biophysica acta,2002,1577(1):1-9.
[28] SIDDIQUE M,GERNHARD S,VON KOSKULLDRING P,et al.The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties[J].Cell stress & chaperones,2008,13(2):183-197.
[29] OUYANG Y D,CHEN J J,XIE W B,et al.Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice[J].Plant molecular biology,2009,70(3):341-357.
[30] SARKAR N K,KIM Y K,GROVER A.Rice sHsp genes:Genomic organization and expression profiling under stress and development[J].BMC Genomics,2009,10(1):1-18.
[31] LOPESCAITAR VS,DE CARVALHO M C,DARBEN L M,et al.Genomewide analysis of the Hsp20 gene family in soybean:Comprehensive sequence,genomic organization and expression profile analysis under abiotic and biotic stresses[J].BMC Genom,2013,14: 1-17.
[32] TAO P,GUO W L,LI B Y,et al.Genomewide identification,classification,and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis)[J].Genet Mol Res,2015,14(4):11975-11993.
[33] PANDEY B,KAUR A,GUPTA O P,et al.Identification of HSP20 gene family in wheat and barley and their differential expression profiling under heat stress[J].Appl Biochem Biotechnol,2015,175(5): 2427-2446.
[34] YU J H,CHENG Y,FENG K,et al.Genomewide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J].Front Plant Sci,2016,7(806): 1215.
[35] GUO M,LIU J H,LU J P,et al.Genomewide analysis of the CaHsp20 gene family in pepper: Comprehensive sequence and expression profile analysis under heat stress[J].Front Plant Sci,2015,6: 1-16.
[36] LEVITT M,GERSTEIN M,HUANG E,et al.Protein folding:The endgame[J].Annu Rev Biochem,1997,66:549-579.
[37] SCHULZELEFERT P.Plant immunity:The origami of receptor activation[J].Curr Biol,2004,14(1):22-24.
[38] PANARETOU B,ZHAI C.The heat shock proteins:Their roles as multi-component machines for protein folding[J].Fungal Biol Rev,2008,22(3):110-119.
[39] HU W H,HU G C,HAN B.Genomewide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J].Plant Sci,2009,176(4):583-590.
[40] CUI Y C,XU G Y,WANG M L,et al.Expression of OsMSR3, in Arabidopsis,enhances tolerance to cadmium stress[J].Plant cell tissue & organ culture,2013,113(2):331-340.
[41] TRIPP J,MISHRA S K,SCHARF K D.Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts[J].Plant Cell Environ,2009,32(2): 123-133.
[42] MOGK A,SCHLIEKER C,FRIEDRICH K L,et al.Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK[J].J Biol Chem,2003,278(33):31033-31042.
[43] 林曉东,傅家瑞,黄上志.玉米胚发育过程中热激蛋白的合成[J].植物生理与分子生物学学报,2004,30 (2):161-166.
[44] GURLEY W B.HSP101:A key component for the acquisition of thermotolerance in plants[J].The plant cell,2000,12(4):457-460.
[45] DELLAQUILA A.Effect of combined salt and heattreatments on germination and heat-shock protein synthesis in lentil seeds[J].Biologia plantarum,2000,43(4):591-594.
[46] 冯玉芹.过表达内质网小分子热激蛋白对拟南芥抗逆性的影响[D].济南:山东师范大学,2010.
[47] WANG W Q,YE J Q,ROGOWSKAWRZESINSKA A,et al.Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination,seedling vigor,and pathogen resistance[J].Journal of proteome research,2014,13(2):606-626.
[48] KOO H J,PARK S M,KIM K P,et al.Small heat shock proteins can release light dependence of tobacco seed during germination[J].Plant physiology,2015,167(3):1030-1038.
[49] 周人纲,李冰,刘宏涛,等.钙-钙调素热激信号转导途径研究进展[J].自然科学进展,2009,19(5):482-490.
[50] LIU H T,SUN D Y,ZHOU R G.Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis[J].Plant cell & environment,2005,28(10):1276-1284.
[51] HECKATHORN S A,RYAN S L,BAYLIS J A,et al.In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heatshock proteins can protect photosystem II during heat stress[J].Functional plant biology,2002,29(8):933-944.
[52] SCHUSTER G,EVEN D,KLOPPSTECH K,et al.Evidence for protection by heatshock protein against photoinhibition during heatshock[J].The EMBO Journal,1988,7(1): 1-6.
[53] PRECZEWSKI P J,HECKATHORN S A,DOWNS C A,et al.Photosynthetic thermotolerance is positively and quantitatively correlated with production of specific heatshock proteins among nine genotypes of Lycopersicon(tomato)[J].Photosynthetica,2000,38(1):127-134.
[54] TRK Z,GOLOUBINOFF P,HORVTH I,et al.Synechocystis HSP17 is an amphitropic protein that stabilizes heatstressed membranes and binds denatured proteins for subsequent chaperonemediated refolding[J].Proceedings of the national academy of sciences of the United States of America,2001,98(6):3098-3103.
[55] TSVETKOVA N M,HORVTH I,TRK Z,et al.Small heatshock proteins regulate membrane lipid polymorphism[J].Proceedings of the national academy of sciences of the United States of America,2002,99(21):13504-13509.
[56] MIYAOTOKUTOMI M,LEE B H,MIZUSAWA N,et al.Active oxygen and photoinhibition of photosystem II[M] //Photosynthesis:Mechanisms and effects.New York:Kluwer Academic Publishers,1998.
[57] HECKATHORN S A,DOWNS C A,COLEMAN J S.Small heat shock proteins protect electron transport in chloroplasts and mitochondria during stress[J].American zoologist,1999,39(6):865-876.
[58] MURAKAMI T,MATSUBA S,FUNATSUKI H,et al.Overexpression of a small heat shock protein,sHSP17.7,confers both heat tolerance and UV-B resistance to rice plants[J].Molecular breeding,2004,13(2):165-175.
[59] SATO Y,YOKOYA S.Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heatshock protein,sHSP17.7[J].Plant cell reports,2008,27(2):329-334.
[60] WANG A Q,YU X H,MAO Y,et al.Overexpression of a small heat-shockprotein gene enhances tolerance to abiotic stresses in rice[J].Plant breeding,2015,134(4):384-393.
[61] KUANG J K,LIU J Z,MEI J,et al.A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice[J].Scientific reports,2017,7(1):1-14.
[62] QI Y C,WANG H J,ZOU Y,et al.Overexpression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice[J].FEBS Letters,2011,585(1):231-239.
[63] CHEN X H,LIN S K,LIU Q L,et al.Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J].Biochimica et biophysica acta,2014,1844 (4):818-828.
[64] SANMIYA K,SUZUKI K,EGAWA Y,et al.Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants[J].FEBS Letters,2004,557(1/2/3): 265-268.
[65] BANZET N,RICHAUD C,DEVEAUX Y,et al.Accumulation of small heat shock proteins,including mitochondrial HSP22,induced by oxidative stress and adaptive response in tomato cells[J].Plant J,1998,13(4):519-527.
[66] ZHU W,LU M H,GONG Z H,et al.Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress[J].African journal of biotechnology,2011,1025(8):4968-4976.
[67] 贺立龙,高娜娜,单忠英,等.甜椒叶绿体小分子量热激蛋白CaHSP26增强拟南芥响应高温胁迫[J].北方園艺,2011(6):140-143.
[68] 刘箭,庄野真理子.番茄线粒体和内质网小分子热激蛋白基因的分子克隆[J].植物生态学报:英文版,2001,43(2):138-145.