课已尽意犹在
2018-04-21刘章玉
摘要:结课是一节课最后的总结阶段,其关键点在于“结”,“结”今天学生学了什么?“结”学生是怎么学的?“结”学生还有什么疑问?“结”有什么要注意的?等等。结课的形式可以因课而异,采用在问题梳理中结课;在引申拓展中结课;在游戏调味中结课;在音乐欣赏中结课等,要丰富结课方式,让结课更精彩,更有效。
关键词:结课;梳理;拓展;调味;欣赏
编筐编篓,重在收口;描龙画凤,贵在点睛。这些名句,说明了一个非常重要的道理,即做好一件事情,收尾是不可或缺,且有着特殊作用的。编筐或编篓,收口是最后的环节,口收得好与不好是完全不一样的效果,直接影响卖出去的价格;描龙或画凤,关键之笔在于点好眼睛,眼睛点得好,龙凤就活灵活现,直接决定画师的水平。可见收好关键之口,关键之笔,是做好一件事的关键环节。而一节课的结尾,正好是这个关键之口、关键之笔,需要教师好好结结。结课是一节课最后的总结阶段,其关键点在于“结”,“结”今天学生学了什么?“结”学生是怎么学的?“结”学生还有什么疑问?“结”有什么要注意的?等等。
笔者从众多的课中,发现老师们对新课的导入、新知的教学过程、练习达成设计、指导,问题的设计、过渡语的总结、衔接等十分注重,唯独对一节课的收尾考虑甚少,有的还很草率,匆忙结课,成了一节课的败笔。从众多的教案中还发现结课变成了一种模式:同学们,今天我们学习了这节课,同学们都学得很好,谁来说说你有什么收获?这好像成了结课的铁律,你这样,我这样,大家都这样。这种结课形式,从知识层面让学生回顾学习的收获,固然有其好的一面,但课课如此,师师如此,总感觉千篇一律,缺失了结课应有的意义。因此,笔者在多年的教学实践中,致力于结课的思考与研究,做到根据不同的教学内容采用不同的结课方式,凸显结课的实效性。
一、 在“问”中结课
问题是学生思考的源泉,以问题来引领结课,可以把所学的知识有条理地进行回顾与记忆,是一种有效且实在的结课方式,也是老师们比较容易操作的、喜欢的。它是通过对几个关键性问题的回顾,来梳理学生刚刚学的知识、技能,目的是巩固知识、延伸知识。这样为学生提供了回顾的线索,使当场所学的知识完整化、条理化、系统化;对学生的思维起到牵线搭桥、推波助澜的作用,在内化思维、加深理解、巩固新知的同时,还为学生营造良好的心理氛围,为投入到下一阶段的学习提供基础和不竭动力。如,教学梯形的认识一课,笔者就采用以问题来引领学生结课,收到了良好的效果。问题1:我们是如何归纳出梯形的意义的?从概念的获取过程来提问,旨在让学生回忆概念的形成过程,学生要从概念的引入、比较图形的共同点,抽象出图形的本质,归纳出概念等过程来回忆。此问题虽有一定的难度,但它从知识的获取过程来提问,再次让学生回顾知识的形成过程,体会获取知识的成功体验,长期累积,将为学生今后怎么学习积淀经验,为学生走向自学的道路提供能源。比起直接让学生回答什么是梯形这样的问题有效多了,丰富多了。问题2:梯形和平行四边形有什么相同点和不同点?采用比较的方式让学生回顾两种图形的本质属性,让学生明确两种图形都是属于四边形,画个圆圈表示四边形,里面画两个小圆圈分别表示梯形和平行四边形,他们是并列关系的;同时明确平行四边形是两组对边分别平行,而梯形是只有一组对边平行。
以问题引领帮助学生及时梳理所学知识,既能巩固知识、辨析知识、深化知识,又能为学生积淀怎么学的经验,为学生的发展提供源源不断的正能量。而这一切教师都必须改变传统观念,为一节课的结课设计好问题,让学生承载问题,在问题中思考,在问题中成长。
二、 在“引”中结课
知识的学习不能仅囿于基础,还必须不断地引申拓展,这样的学习,学生才能不断突破固有思维,锤炼思维、发展思维。而结课也可以根据知识的实际情況,适时地加以引申拓展,将学生的学习带入新的天地,让学生的思维在新的天地自由驰骋,从而培养学生学以致用、举一反三的能力。如,教学三角形内角和的结课,笔者根据三角形的内角和是180°作为其他内角和的基础和延伸,就采用了引申拓展的结课方式:这节课我们已经探究出了三角形的内角和是180°,前面所学的知识是后续学习知识的基础、铺垫,那么你们能根据三角形内角180°,来推算四边形、五边形、六边形的内角和吗?一问激起学生的思维涟漪,是呀,四边形的内角和到底是多少度呢?在问题的引领下,有的学生立马动笔,在本子上画个四边形,标出四个内角,准备用量角器量;有的学生说正方形、长方形的四个内角和是360°,我想其他四边形的内角和应该也是360°;到底是不是360°,能不能证明呢?有学生说,可以利用三角形内角和是180°来求,把四边形分成两个三角形就可以啦,边说边上台演示。这位学生把四边形分解成两个三角形的方法就像是导火索,立马把学生的思维引开了:四边形可以分成两个三角形,内角和是180°乘2,等于360°;那么五边形就可以分成三个三角形,内角和应该是180°乘3,等于540°。六边形就可以分成4个三角形,内角和等于180°乘4是720°。教师趁机追问:“照这样的规律,七边形、八边形、九边形的内角和又是多少度呢?你能从中发现什么规律呢”?这样的结课方式,既巩固了三角形内角和是180°的原理,又以此为基础,进行了引申拓展,把多边形的内角和的求法通过猜想验证得以感性认识,为学有余力的学生探究多边形的内角和提供了一个研究的舞台。
三、 在“玩”中结课
玩中学数学,道出了学习数学不仅仅就是解题,还可以在玩中学习。结课的方式也可以根据这一理念进行,比如游戏调味结课就是一种很好的方式。喜欢游戏是学生的天性,符合学生的心理特点,把游戏与教学结合起来,通过游戏使学生的身心得到放松、浓厚的兴趣得以保持,让学生在兴趣盎然中结课。
如,教学因数和倍数一课时,有老师模仿特级教师黄爱华的思路,设计了找朋友,离教室的结课方式,取得了良好的教学效果。
教师出示带有数字的卡片说:“请记清游戏规则,第一记住自己的座位号;第二为座位号找朋友,如果你的座位号是抽出卡片上的数的倍数时,走上讲台,为你的座位号找出两个朋友,一个是它的因数、一个是它的倍数;第三找对了,离开教室。”教师首先出示数字2,座位号是2的倍数的2号、4号、6号、8号、10号、12号、14号、16号、18号、20号、22号、24号、26号、28号、30号……分别走上讲台,说出了自己座位号的倍数和因数,然后离开了教室。接着教师出示卡片3、5,座位号是3、5的倍数的学生,也用同样的方式走出了教室。最后,教室里只剩下座位号是1、7、11、13、19、23、29、31、37的学生。教师追问:“出什么数字时,你们就都可以同时出去呢?”在学生异口同声中,教师出示数字1,剩下的学生欢快走出教室。在玩中结课,巧妙地把所学的知识融入游戏中,让学生应用所学的知识进行看似在玩,其实则在巩固所学知识。把应用知识进行了包装,学生兴趣盎然,愉悦感强,不失为一种有魅力的结课方式。
四、 在“赏”中结课
欣赏能陶冶情操,音乐是孩子们喜欢的,把音乐欣赏融入结课中,不失为一种有创意的结课方式。所谓的音乐欣赏结课方式,把本节课所学的知识,采用学生喜闻乐见的:或音乐、或童话、或故事,或錄像、或儿歌、或诗朗诵等方式,让学生感受到数学与音乐、童话、儿歌之间和谐而统一的美,在美的享受中结束一节新课的学习。既巩固新知又欣赏到或音乐,或童话,或儿歌,其乐无穷,幸福满满。
如,教含有小括号的四则混合运算时,笔者就采用了音乐欣赏结课方式,取得了非常好的效果。教师设问:美好的时光总是过得不知不觉,一节课就要结束了,回忆一下,今天这节课我们认识了什么新朋友?学生们异口同声地说:“小括号”,下面我们就一起来欣赏小括号的儿歌好不好?随即播放已录制好的儿歌:
小括号,变顺序,计算遇到它先算;每每计算看清楚,千万别因马虎忘了它;用好小括号,综合计算人人顶呱呱,顶呱呱。
在音乐律动下,孩子们也随着音乐的节拍,快乐地跟着学唱,在愉快的歌声中,不仅进一步明确了小括号的作用,同时也欣赏了音乐的美。把数学与音乐结合起来,有效整合学科,真正做到了在娱乐中学习,在学习中领悟新知。
总而言之,结课犹如一曲乐章的尾声,设计得好,就会有掷地有声、余音缭绕、回味无穷之感。因此,要重视结课,把结课当作新授课的环节来设计,根据不同课型,设计出不同的结课方式,让结课真正结出累累硕果,从而达到课已尽而意无穷的美好境界,为课堂教学的整体水平提升一个层次。
作者简介:
刘章玉,福建省宁德市,寿宁县鳌阳中心小学。