APP下载

时滞系统稳定性分析
——齐次多项式Lyapunov泛函方法

2018-03-22刘兴文

关键词:时滞例子线性

刘兴文

(西南民族大学电气信息工程学院,四川 成都 610041)

稳定性是动力学系统最重要的性质之一,在数学和工程领域得到广泛的研究[1-3].众所周知,Lyapunov理论是分析稳定性最有效和最流行的工具,其核心是构造合适的Lyapunov函数(无时滞系统)[4-5]或Lyapunov泛函(时滞系统)[6-8].

由于计算技术不断发展,二次Lyapunov函数得到广泛应用,所得的稳定性判据一般用线性矩阵不等式来描述[9].对时滞系统,二次Lyapunov泛函是分析稳定性的有力工具[10-13].然而在很多情况下,用二次Lyapunov函数或二次Lyapunov泛函获得低保守性的稳定性判据相当不易[14-15].因此,需要寻求稳定性分析的新方法.最近,协正多项式Lyapunov函数(齐次多项式Lyapunov函数的一种特殊形式)被用于任意切换信号的切换系统[16].Chesi等人提出一种无保守性线性矩阵不等式条件验证满足滞留时间的切换系统的指数稳定性[17],这启发了广大学者构造高次多项式Lyapunov函数,而不是二次Lyapunov函数,分析动力学系统的稳定性[17-20].

在此背景下,人们开始用多项式Lyapunov泛函研究时滞系统.然而,多项式Lyapunov泛函方法尚未得到深入研究.文献[21-22]尝试采用该方法建立时滞系统的稳定性条件.需要注意的是,这两篇文献的主要推证有误.因此,本文将进一步探索多项式Lyapunov泛函.

本文结构安排如下:第1节介绍了预备知识,第2节给出主要结果,第3节给出一个数值例子,第4节总结全文.

1 问题陈述及预备知识

2 主要结果

3 数值例子

本节给出一个数值例子验证所得的理论结果.

考虑下面的系统方程:

表1 时滞的上界:时变时滞(q=2)Table 1 Upper bound of delays:Time-varying delays(q=2)

4 结论

本文针对时滞系统提出一种齐次多项式Lyapunov泛函方法,建立了系统的稳定性条件.数值例子表明本文给出的方法对快速变化的时滞显著效果.

[1]KOLMANOVSKII V,NOSOV V,EDS.Stability of Functional Differential Equations[M].Academic Press,1986.

[2]WU M,HE Y,SHE J H.Stability Analysis and Robust Control of Time-Delay Systems[M].Beijing:Springer,2010.

[3]LIU X.Stability criterion of 2-D positive systems with unbounded delays described by Roesser model[J].Asian Journal of Control,2015,17(2):544-553.

[4]OOBA T,FUNAHASHI Y.Two conditions concerning common quadratic Lyapunov functions for linear systems[J].IEEE Trans.on Automatic Control,1997,42(5):719-722.

[5]JOHANSSON M,RANTZER A.Computation of piecewise quadratic Lyapunov functions for hybrid systems[J].IEEE Trans on Automatic Control,vol,1998(4):555-559.

[6]SUN Y G,WANG L.Stabilization of planar discrete-time switched systems:Switched Lyapunov functional approach[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1062-1068.

[7]LIU Y,FENG W.Razumikhin-Lyapunov functional method for the stability of impulsive switched systems with time delay[J].Mathematical& Computer Modelling,2009,49(1):249-264.

[8]MAZENC F,MALISOFF M.Stability analysis for time-varying systems with delay using linear Lyapunov functionals and a positive systems approach[J].IEEE Trans.on Automatic Control,2016,61(3):771-776.

[9]BOYD S,GHAOUI E,FERON E,et al.Linear Matrix Inequalities in System and Control Theory[J].Philadelphia:SIAM,1994.

[10]WU H N.Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay:a fuzzy Lyapunov-Krasovskii functional approach[J].IEEE Trans on Systems,Man,& Cybernetics-Part B,2006,36(4):954-962.

[11]HE Y,WANG Q G,LIN C,et al.Delay-range-dependent stability for systems with time-varying delay[J].Automatica,2007,43(2):371-376.

[12]SONG Y,FAN J,FEI M,et al.Robust H∞control of discrete switched system with time delay[J].Applied Mathematics& Computation,2008,205(1):159-169.

[13]XU L,XU D.Mean square exponential stability of impulsive control stochastic systems with time-varying delay[J].Physics Letters A,2009,373(3):328-333.

[14]DAAFOUZ J,RIEDINGER P,IUNG C.Stability analysis and control synthesis for switched systems:A switched Lyapunov function approach[J].IEEE Trans.on Automatic Control,2002,47(11):1883-1887.

[15]GEROMEL J C,COLANERI P.Stability and stabilization of discrete time switched systems[J].International Journal of Control,2006,79(7):719-728.

[16]ZHAO X,LIU X,YIN S,et al.Improved results on stability of continuous-time switched positive linear systems[J].Automatica,2014,50(2):614-621.

[17]CHESI G,COLANERI P,GEROMEL J C,et al.A nonconservative LMI condition for stability of switched systems with guaranteed dwell time[J].IEEE Trans on Automatic Control,2012,57(5):1297-1302.

[18]LIU X,ZHAO X.Stability analysis of discrete-time switched systems:A switched homogeneous Lyapunov function method[J].International Journal of Control,2016,89(2):297-305.

[19]CHESI G.Sufficient and necessary LMI conditions for robust stability of rationally time-varying uncertain systems[J].IEEE Trans on Automatic Control,2013,58(6):1546-1551.

[20]CHESI G,MIDDLETON R H.H∞and H2norms of 2-D mixed continuous-discrete-time systems via rationally-dependent complex Lyapunov functions[J].IEEE Trans on Automatic Control,2015,60(10):2614-2625.

[21]ZHANG H,XIA J,ZHUANG G.Improved delay-dependent stability analysis for linear time-delay systems:Based on homogeneous polynomial Lyapunov-Krasovskii functional method[J].Neurocomputing,2016,193:176-180.

[22]PANG G C,ZHANG K J.Stability of time-delay system with time-varying uncertainties via homogeneous polynomial lyapunov-krasovskii functions[J].International Journal of Automation and Computing,2015,12(6):657-663.

[23]CHESI G,GARULLI A,TESI A,et al.Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems[M].New York:Springer,2009.

[24]BERNSTEIN D S.Matrix Mathematics:Theory,Facts,and Formulas[M].2nd ed.Princeton:Princeton University Press,2009.

[25]KIM J H.Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty[J].IEEE Trans on Automatic Control,2001,46(5):789-792.

[26]JING X J,TAN D L,WANG Y C.An LMI approach to stability of systems with severe time-delay[J].IEEE Trans.on Automatic Control,2004,49(7):1192-1195.

[27]LIU X,ZHANG H.New stability criterion of uncertain systems with time-varying delay[J].Chaos,Solitons &Fractals,2005,26(5):1343-1348.

猜你喜欢

时滞例子线性
渐近线性Klein-Gordon-Maxwell系统正解的存在性
随机时滞微分方程的数值算法实现
线性回归方程的求解与应用
《团圆之后》:“戏改”的“一个鲜明的例子”
针对输入时滞的桥式起重机鲁棒控制
不确定时滞奇异摄动系统的最优故障估计
二阶线性微分方程的解法
非齐次线性微分方程的常数变易法
缩宫素联合米索前列醇防治90例子宫收缩乏力性产后出血临床观察
离散时滞网络控制系统的镇定研究