APP下载

苦参碱对大鼠肝缺血再灌注损伤的抑制作用及机制

2018-03-22白宁王栋欧阳锡武周乐杜王志明

中国普通外科杂志 2018年1期
关键词:苦参碱肝细胞低剂量

白宁,王栋,欧阳锡武,周乐杜,王志明

(中南大学湘雅医院 1. 急诊科 2. 普通外科,湖南 长沙 410008)

在大多数肝脏手术中,如肝移植,规则肝叶切除等,需分次分段阻断肝脏血流控制术中出血,以达到减少出血,同时减少其潜在的副损伤的目的。但该过程可造成肝脏的缺血再灌注损伤,引起肝细胞功能失调[1-2]。大量研究[3-5]表明,肝缺血再灌注损伤常造成肝窦内细胞损伤,从而诱导活性氧自由基富集,释放促炎症反应细胞因子,引起肝细胞坏死,也会引起肝细胞凋亡及自噬,表现出肝功能异常[6]。因此肝缺血再灌注损伤的防治一直是肝脏外科的重要研究领域。已有研究[7]证实中药单体苦参碱(Sophocarpidine,matrine)具有抗炎、抗氧化、保肝等作用,对缺血再灌注损伤引起的炎症反应、细胞凋亡、自噬及抗癌等可能有重要的调节作用[8-9]。另有研究[10-11]发现,苦参碱对肝缺血再灌注损伤引起的炎症反应、肝纤维化及肝细胞异常凋亡具有明显的抑制作用。但苦参碱抑制肝缺血再灌注损伤的机制尚未完全阐明。本研究在建立大鼠肝缺血再灌注损伤模型的基础上,观察苦参碱对肝脏缺血再灌注后的保护作用及相关机制。

1 材料与方法

1.1 实验材料

健康成年雄性SD大鼠,清洁级,40只,9~12周龄,体质量200~250 g,由中南大学实验动物学部提供。苦参碱(M5319)购于美国Sigma公司。丙氨酸转氨酶(ALT)检测试剂盒、天冬氨酸转氨酶(AST)检测试剂盒、TNF-α ELISA试剂盒和IL-1β ELISA试剂盒均由南京建成生物工程研究所提供;TUNEL染色试剂盒由美国Promega公司生产;肿瘤坏死因子相关的凋亡诱导配体(TRAIL)、BAX、激活型caspase-3(cleaved caspase-3,Asp175)及内参β-actin单克隆抗体均为英国Abcam公司产品。

1.2 实验方法

1.2.1 动物分组 40只SD大鼠随机均分为4组:⑴ 假手术组;⑵ 肝缺血再灌注损伤模型组(模型组);⑶ 低剂量苦参碱(25 mg/kg)预处理+肝缺血再灌注损伤模型组(低剂量苦参碱组);⑷ 高剂量苦参碱(50 mg/kg)预处理+肝缺血再灌注损伤模型组(高剂量苦参碱组)。

1.2.2 动物处理 术前12 h禁食,自由饮水,经腹腔注射4%戊巴比妥钠(40 mg /kg)麻醉,固定,常规消毒。取上腹正中切口入腹,低、高剂量苦参碱组大鼠在夹闭门静脉和肝动脉前30 min,经门静脉主干注入各自剂量的苦参碱溶液,假手术组与模型组大鼠则以相同的方式注入等体积的生理盐水;30 min后,模型组与低、高剂量苦参碱组大鼠用无创血管夹阻断肝左、中叶脉管,造成约70%肝脏缺血,60 min后放开血管夹,恢复阻断区血供再灌注120 min,建立肝切除肝缺血再灌注模型[12],并切除未经缺血处理的肝叶,约占全肝30%。假手术组仅行开腹手术,不行肝切除及肝缺血等处理。

1.2.3 标本处理 再灌注120 min后,采集各组大鼠肝上下腔静脉血,常温1200r/min离心10 min,取血清保存待测;处死各组动物,切取右上叶肝组织,以中性福尔马林溶液固定,常规石蜡切片后用于组织病理学观察,以及肝细胞凋亡检测;另取5 g肝组织破碎离心后用于Western blot检测。

1.2.4 血清学指标检测 大鼠血清ALT、AST含量检测按照ALT、AST试剂盒说明进行,大鼠血清TNF-α、IL-1β的含量分别采用各自ELISA试剂盒检测。

1.2.5 组织病理学检测 HE染色后光镜下观察肝脏组织病理学的改变。

1.2.6 TUNEL法检测肝细胞凋亡 按试剂盒说明进行凋亡检测,DAB显色,苏木素复染。在显微镜下观察、计数、拍照。评判标准:阳性细胞核和细胞碎片呈深浅不一的棕黄色。每张切片随即选取10个高倍视野,计数凋亡细胞。凋亡指数(apoptosis index,AI)=视野内凋亡细胞数/视野内肝细胞数×100%。

1.2.7 Western blot检测 新鲜肝脏组织采用RIPA裂解液冰上完全裂解,12 000r/min,4 ℃离心15 min,取上清收集总蛋白。5×上样缓冲液混合煮沸5 min。垂直板电泳分离条带,转膜,分别加入TRAIL、BAX、cleaved caspase-3单克隆抗体(一抗1:1 000)4 ℃孵育过夜,洗膜后用辣根过氧化物酶(HRP)标记的二抗(1:5 000)孵育2 h,利用化学发光仪曝光,采集目标蛋白条带。Western blot图像灰度值采用Quantity One 2.4软件分析。

1.3 统计学处理

采用SPSS 18.0软件处理数据,各组间比较采用单因素方差分析,两两比较采用q检验。P<0.05为差异有统计学意义。

2 结 果

2.1 各组转氨酶与炎症因子水平

血清学检测结果显示,与对照组比较,其余各组血清ALT、AST、TNF-α、IL-1β水平均明显升高(均P<0.05),但低、高剂量苦参碱组以上指标的升高程度均低于模型组(均P<0.05),且高剂量苦参碱组以上指标升高程度均低于低剂量苦参碱组(均P<0.05)(表1)。

表1 各组转氨酶与炎症因子水平比较(n=10,±s)Table 1 Comparison of the levels of transaminases and in fl ammatory factors among groups (n=10, ±s)

注:1)与假手术组比较,P<0.05;2)与模型组比较,P<0.05;3)与低剂量苦参碱组比较,P<0.05Note: 1) P<0.05 vs. sham operation group; 2) P<0.05 vs. model group; 3) P<0.05 vs. low dose matrine group

组别 ALT(U/L) AST(U/L) TNF-α(ng/L) IL-1β(ng/L)假手术组 49.3±5.7 150.1±11.4 2.11±0.47 1.37±0.25模型组 555.6±46.11) 796.1±57.21) 14.22±1.401) 7.64±0.831)低剂量苦参碱组 267.4±30.81),2) 445.7±37.81),2) 10.37±0.981),2) 4.92±0.941),2)高剂量苦参碱组 197.4±33.51),2),3) 408.9±44.41),2),3) 8.32±1.741),2),3) 2.55±1.111),2),3)

2.2 各组肝缺血再灌注损后肝组织病理学变化

光学显微镜下可见,假手术组肝组织无病理改变,模型组肝细胞肿胀、肝细胞空泡变性和点状坏死,大量炎性细胞浸润;低、高剂量苦参碱组肝组损伤程度及范围均明显小于模型组,表现为组织结构尚清楚,肝细胞轻、中度浊肿,点状嗜酸性变性,轻度肝细胞淤胆,少量炎性细胞浸润,且高剂量苦参碱组肝组织损伤程度轻于低剂量苦参碱组(图1)。

图1 各组肝组织病理学检测(HE×200) A:假手术组;B:模型组;C:低剂量苦参碱组:D:高剂量苦参碱组Figure 1 Histopathological examination in each group (HE×200) A: Sham operation group; B: Model group; C: Low dose matrine group; D: High dose matrine group

2.3 各组缺血再灌注后的肝细胞凋亡情况

TUNEL染色结果观察显示,假手术组仅有少量的凋亡阳性细胞,模型组可见大量胞核黄染的阳性细胞,2个剂量苦参碱组阳性细胞明显少于模型组,高剂量苦参碱组阳性细胞减少数量更为明显;比较各组的AI,差异均有统计学意义(均P<0.05)(图2-3)。

图2 各组TUNEL染色结果(×200) A:假手术组;B:模型组;C:低剂量苦参碱组:D:高剂量苦参碱组Figure 2 TUNEL staining results in each group (×200) A: Sham operation group; B: Model group; C: Low dose matrine group; D: High dose matrine group

图3 各组AI比较 注:1)与假手术组比较,P<0.05;2)与模型组比较,P<0.05;3)与低剂量苦参碱组比较,P<0.05Figure 3 Comparison of AI among groups Note: 1) P<0.05 vs.sham operation group; 2) P<0.05 vs. model group;3) P<0.05 vs. low dose matrine group

2.4 Western blot检测结果

Western blot结果显示,各组肝组织TRAIL、BAX、cleaved caspase-3蛋白的表达水平均明显高于假手术组(均P<0.05),其中模型组以上蛋白的上调最为明显,2个剂量苦参碱组以上蛋白上调程度均明显低于模型组,且高剂量苦参碱组上调程度低于低剂量苦参碱组(均P<0.05)(图4-5)。

图4 各组Western blot检测结果Figure 4 Western blot results of each group

图5 各组各蛋白相对表达量比较 注:1)与假手术组比较,P<0.05;2)与模型组比较,P<0.05;3)与低剂量苦参碱组比较,P<0.05Figure 5 Comparison of the relative protein expression levels among groups Note: 1) P<0.05 vs. sham operation group; 2) P<0.05 vs. model group; 3) P<0.05 vs. low dose matrine group

3 讨 论

中药单体苦参碱具有抗炎、抗氧化、抗肿瘤、免疫抑制和保肝等作用[7]。已用于临床治疗,主要用于治疗慢性乙型病毒性肝炎[8],对多种原因引起的肝损伤及肝纤维化均有较好的治疗作用[8-9]。本研究通过大鼠肝缺血再灌注损伤模型,观察苦参碱的干预作用,结果发现,苦参碱对大鼠肝缺血再灌注损伤具有明显的保护作用,表现为血清转氨酶水平、炎症介质水平较模型组明显降低,肝组织病理损伤明显减轻,且呈明显的剂量依懒性。

为进一步探讨苦参碱抑制肝缺血再灌注损伤的机制,本研究检测了各组再灌注后肝细胞的凋亡情况,结果显示,苦参碱能明显减少缺血再灌注后肝组织的肝细胞凋亡。细胞凋亡是动物界及人类重要的细胞死亡模式,受多种因素的调控。TRAIL是近年来发现的新的TNF家族成员[13],TRAIL参与T细胞、NK细胞对集体的免疫监视,阻止肿瘤细胞转移,因此在肿瘤治疗方面备受关注。另外发现,TRAIL通过结合靶细胞相应的受体,发挥凋亡诱导作用。诸多研究证实,TRAIL对多种实体肿瘤细胞存在杀伤作用,如NF-κB可诱导TRAIL信号调节肝癌细胞凋亡[14],肿瘤免疫耐受过程中,TRAIL起重要的调节作用,许多海洋药类可通过TRAIL途径调节细胞凋亡[15]。近年越来越多的证据显示,在正常人细胞中,TRAIL具有调节细胞凋亡的作用。梁艳等[16]研究发现,TRAIL可诱导正常人肝细胞线粒体损伤,促进肝细胞凋亡,而且人角质细胞凋亡可通过TRAIL途径[17]。本研究结果显示,大鼠肝缺血再灌注后肝组织TRAIL蛋白表达明显升高,表明TRAIL途径在大鼠缺血再灌注引起的肝细胞凋亡过程中起重要作用。

TRAIL途径可通过诱导促凋亡蛋白BAX的表达,而BAX的激活可抑制肝细胞线粒体转膜能力,进而释放细胞色素C,促进凋亡关键因子caspase-3[18],最终引起细胞凋亡[17,19-21]。本研究证实,大鼠肝缺血再灌注后BAX蛋白以及激活型caspase-3的表达均明显上调,可见,在大鼠肝缺血再灌注损伤中,TRAIL-BAX-caspase-3途径的活化是肝细胞凋亡的重要原因。苦参碱预处理同样明显降低了缺血再灌注后肝组织BAX蛋白的表达以及激活型caspase-3水平。由此可有推测,苦参碱可能是通过抑制缺血再灌注后TRAIL的表达,进而减少了BAX与caspase-3的活化,减轻大鼠肝缺血再灌注后肝细胞的凋亡,从而有效抑制肝缺血再灌注损伤。

总之,苦参碱对大鼠肝缺血再灌注损伤有明显的抑制作用,本研究初步探讨了其作用机制,认为其抑制TRAIL-BAX-caspase-3途径引起的肝细胞凋亡可能是重要的作用机制之一。因而,进一步阐明其作用机制,并将其进一步开发利用,将有望对临床肝缺血再灌注损伤的防治提供有效手段。

[1] Liu A, Jin H, Dirsch O, et al. Release of danger signals during ischemic storage of the liver: a potential marker of organ damage?[J]. Mediators In fl amm, 2010, 2010:436145. doi: 10.1155/2010/436145.

[2] 李玲, 傅华, 李汝泓, 等. 氟比洛酚酯对肝叶切除患者肝缺血再灌损伤保护作用的研究[J] .中国普通外科杂志, 2016, 25(12):1810–1814. doi:10.3978/j.issn.1005–6947.2016.12.024.Li L, Fu H, Li RH, et al. Study on the protective effect of flurbiprofen axetil on hepatic ischemia reperfusion injury in hepatectomy patients[J]. Chinese Journal of General Surgery, 2016,25(12):1810–1814. doi:10.3978/j.issn.1005–6947.2016.12.024.

[3] Kloek JJ, Maréchal X, Roelofsen J, et al. Cholestasis is associated with hepatic microvascular dysfunction and aberrant energy metabolism before and during ischemia-reperfusion[J]. Antioxid Redox Signal, 2012, 17(8):1109–1123. doi: 10.1089/ars.2011.4291.

[4] Hao BB, Pan XX, Fan Y, et al. Oleanolic acid attenuates liver ischemia reperfusion injury by HO-1/Sesn2 signaling pathway[J].Hepatobiliary Pancreat Dis Int, 2016, 15(5):519–524.

[5] 魏来, 陈文雁, 邹毅, 等. 硫化氢抑制自噬减轻肝硬化大鼠肝脏缺血再灌注损伤[J]. 中国普通外科杂志, 2016, 25(1):97–102.doi:10.3978/j.issn.1005–6947.2016.01.015.Wei L, Chen WY, Zou Y, et al. Protective effect of hydrogen sul fi de against hepatic ischemia-reperfusion injury in cirrhotic rats by autophagy inhibition[J]. Chinese Journal of General Surgery, 2016,25(1):97–102. doi:10.3978/j.issn.1005–6947.2016.01.015.

[6] Shen M, Lu J, Dai W, et al. Corrigendum to “Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy“[J]. Mediators In fl amm, 2016, 2016:5434275.

[7] Liou CJ, Lai YR, Chen YL, et al. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice[J]. Mediators Inflamm,2016, 2016:3630485. doi: 10.1155/2016/3630485.

[8] Pu J, Fang FF, Li XQ, et al. Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting In fl ammatory Responses[J]. Int J Mol Sci, 2016, 17(9). pii: E1410.doi: 10.3390/ijms17091410.

[9] Ma K, Huang MY, Guo YX, et al. Matrine-induced autophagy counteracts cell apoptosis via the ERK signaling pathway in osteosarcoma cells[J]. Oncol Lett, 2016, 12(3):1854–1860.

[10] Feng Y, Ying HY, Qu Y, et al. Novel matrine derivative MD-1 attenuates hepatic fi brosis by inhibiting EGFR activation of hepatic stellate cells[J]. Protein Cell, 2016, 7(9):662–672. doi: 10.1007/s13238–016–0285–2.

[11] 朱骏, 朱江, 唐发兵, 等. 苦参碱对大鼠肝脏缺血/再灌注损伤后肝功能和TNF-α的影响[J]. 中国临床研究, 2015, 28(9):1147–1150.doi: 10.13429/j.cnki.cjcr.2015.09.007.Zhu J, Zhu J, Tang FB, et al. In fl uence of matrine on liver functions and TNF-α level following liver ischemic reperfusion injury in rats[J]. Chinese Journal of Clinical Research, 2015, 28(9):1147–1150. doi: 10.13429/j.cnki.cjcr.2015.09.007.

[12] Hines IN, Hoffman JM, Scheerens H, et al. Regulation of postischemic liver injury following different durations of ischemia[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 284(3):G536–545.

[13] Sosna J, Philipp S, Fuchslocher Chico J, et al. Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells[J]. Mol Cell Biol, 2016,36(20): 2626–2644. doi: 10.1128/MCB.00941–15.

[14] Fu K, Pan H, Liu S, et al. Glycogen synthase kinase-3β regulates tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis via the NF-κB pathway in hepatocellular carcinoma[J]. Oncol Lett, 2015, 10(6): 3557–3564.

[15] Elmallah MI, Micheau O. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)[J]. Mar Drugs, 2015, 13(11):6884–6909. doi:10.3390/md13116884.

[16] 梁艳, 杨再兴, 王皓, 等. TRAIL诱导正常人肝细胞线粒体损伤的实验研究[J]. 现代免疫学, 2009, 29(2):143–147.Liang Y, Yang ZX, Wang H, et al. Experimental study of TRAIL inducing mitochondria damage in normal liver cells[J]. Current Immunology, 2009, 29(2):143–147.

[17] Lee DH, Nam YJ, Kim YJ, et al. Rotundarpene prevents TRAIL-induced apoptosis in human keratinocytes by suppressing the caspase-8- and Bid-pathways and the mitochondrial pathway[J].Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(12):1209–1219.doi: 10.1007/s00210–014–1051–8.

[18] 谭烨, 尤楠, 郑璐, 等. 过表达Tg737基因对肝癌细胞周期和凋亡的影响[J]. 中国普通外科杂志, 2017, 26(3):333–340. doi:10.3978/j.issn.1005–6947.2017.03.010.Tan Y, You N, Zheng L, et al. Influence of Tg737 gene overexpression on cell cycle and apoptosis of hepatocellular carcinoma cells[J]. Chinese Journal of General Surgery, 2017,26(3):333–340. doi:10.3978/j.issn.1005–6947.2017.03.010.

[19] 夏茜, 李晖, 吴杰, 等. 胃癌细胞中miR-455–3p的表达及其对增殖和凋亡的影响[J]. 中国普通外科杂志, 2017, 26(10):1272–1278.doi:10.3978/j.issn.1005–6947.2017.10.008.Xia Q, Li H, Wu J, et al.MiR-455–3p expression and its action on proliferation and apoptosis in gastric carcinoma cells [J]. Chinese Journal of General Surgery, 2017, 26(10):1272–1278. doi:10.3978/j.issn.1005–6947.2017.10.008.

[20] 张桂英, 彭杰, 肖志强, 等. 塞来昔布诱导大肠癌细胞凋亡与细胞色素C依赖性信号途径活化相关[J]. 中华消化杂志, 2004,24(9):537-540. doi:10.3760/j.issn:0254-1432.2004.09.008.Zhang GY, Peng J, Xiao ZQ, et al. Induction of apoptosis by celecoxib through activation of cytochrome C pathway in HT-29 cell[J]. Chinese Journal of Digestion, 2004, 24(9):537–540.doi:10.3760/j.issn:0254–1432.2004.09.008.

[21] 何青春, 刘婷, 周利平 等. 轻中度亚低温对大鼠心肺复苏后脑细胞caspase-3、Bcl-2和Bax蛋白表达的影响[J]. 南方医科大学学报, 2013, 33(10):1489–1493.He QC, Liu T, Zhou LP, et al. Effect of mild to moderate hypothermia on casepase-3, Bcl-2 and Bax expressions in brain tissue of rats after cardiopulmonary resuscitation[J]. Journal of Southern Medical University, 2013, 33(10):1489–1493.

猜你喜欢

苦参碱肝细胞低剂量
320排CT低剂量容积体部灌注成像强化峰值时间对孤立性周围肺病变诊断价值
16排螺旋CT在肝细胞癌诊断中的应用分析
外泌体miRNA在肝细胞癌中的研究进展
锌指蛋白与肝细胞癌的研究进展
乙型肝炎病毒与肝细胞癌微血管侵犯的相关性
氧化苦参碱的药代动力学、毒理学及药理作用
全模型迭代重建技术对低剂量CT冠状动脉支架显示的初步研究
氧化苦参碱对人肝癌HepG2细胞增殖及能量代谢的影响
苦参碱抑制RPMI8226细胞增殖及对Notch通路的影响
16排螺旋CT低剂量扫描技术在腹部中的应用