Toll样受体3在大鼠急性心肌梗死中的作用机制
2018-03-20王媛媛曹建邓莉
王媛媛 曹建 邓莉
[摘要] 目的 研究Toll样受体3(TLR3)在大鼠心肌梗死中的表达及作用机制。 方法 制备TLR3基因敲除大鼠及野生型大鼠,采用球囊结扎冠脉方法制作心肌梗死动物模型。随机分为野生型假手术组(n=15)、野生型心肌梗死组(n=15)、(TLR3-/-)假手术组(n=15)、(TLR3-/-)心肌梗死组(n=15)。检测心肌组织肌酸激酶同工酶(CK-MB)、肌钙蛋白cTnI含量;通过Western blot法检测Toll样受体3、NF-κB表达。 结果 与野生型心肌梗死组大鼠比较,(TLR3-/-)心肌梗死組反映心肌损伤的CK-MB、cTnI减低;NF-κB表达降低;各组间差异均有统计学意义(P<0.05)。 结论 TLR3基因缺失在急性心肌梗死中具有心脏保护作用,其保护机制与下调NF-κB表达,减轻心肌梗死炎症反应有关。
[关键词] TOLL样受体3;急性心肌梗死;核因子-κB;基因敲除
[中图分类号] R541;R392 [文献标识码] A [文章编号] 1673-9701(2018)01-0036-03
Mechanism of Toll-like receptor 3 in acute myocardial infarction in rats
WANG Yuanyuan1 CAO Jian2 DENG Li1
1.Department of Cardiology,the Third Hospital of Nanchang, Nanchang 330009,China; 2.Department of Anesthesiology,the Second Affiliated Hospital of Nanchang University,Nanchang, 330006,China
[Abstract] Objective To study the expression of Toll-like receptor 3(TLR3) in myocardial infarction of rats and its mechanism. Methods TLR3 gene knockout rats and wild-type rats were prepared. Animal models of myocardial infarction were created by balloon ligation of coronary arteries. The rats were randomly divided into wild-type sham surgery group (n=15), wild-type myocardial infarction group(n=15),(TLR3-/-)sham surgery group(n=15), and(TLR3-/-)myocardial infarction group(n=15). The creatine kinase(CK-MB)and troponin cTnI contents in myocardial tissues were measured. Toll-like receptor 3 and NF-κB expressions were detected by Western blot method. Results Compared with the rats in the wild-type myocardial infarction group, the levels of CK-MB and cTnI which reflected myocardial injury in the(TLR3-/-) myocardial infarction group were decreased; NF-κB expression was decreased; the differences between groups were statistically significant(P<0.05). Conclusion TLR3 gene deletion has cardioprotective effects in acute myocardial infarction. Its protective mechanism is related to the down-regulation of NF-κB expression and alleviation of inflammatory response induced by myocardial infarction.
[Key words] TOLL-like receptor 3; Acute myocardial infarction; NF-κB; Gene knockout
急性心肌梗死是严重危害人类健康的常见疾病之一,研究表明,在心肌梗死后,心肌组织会分泌大量炎性因子(如白细胞介素),炎症因子局部异常表达及不适当堆积可激活细胞毒性 T 细胞造成心肌细胞的结构和功能障碍,与心室重塑密切相关[1-3]。此外还可引起心肌细胞凋亡,在调节心脏结构和功能中起到重要作用。调节炎性细胞因子网络是心肌梗死后重要治疗方法之一。
Toll样受体3(Toll-like receptor 3,TLR3)是生物体重要的病原体模式识别信号分子,不同的TLRs识别不同的病毒、细菌、真菌或原生物。TLRs通过促使炎性因子和干扰素释放来抵抗病原微生物感染其介导的炎症反应,目前TLR3在急性心肌梗死中的作用机制尚未阐明,本实验通过制备TLR3基因敲除大鼠,并制备急性心肌梗死模型,来观察TLR3基因敲除后对急性心肌梗死大鼠的心肌保护作用及可能机制。
1 材料与方法
1.1实验动物及试剂材料
本研究已经通过南昌大学医学院动物伦理委员会审查,许可证号为SCXM(赣)2014-0012,TLR3基因敲除大鼠,8周龄,雌雄各半(由北京大学医学部实验动物科学部提供)。野生型SD大鼠(南昌大学实验动物中心提供)。兔抗小鼠辣根过氧化物酶标记的二抗(美国Sigma公司)、肌酸激酶同工酶(CK-MB)、肌钙蛋白cTnI检测试剂盒(武汉亚法生物制品有限公司)、小鼠抗Akt单克隆抗体、TLR3抗体、NF-κB抗体购自美国Santa Cruz公司,蛋白濃度测定标准品购自普利莱公司。
1.2 建立动物模型
实验动物分为四组,制作大鼠急性心肌梗死模型,雄性SD大鼠,术前4 h禁食水,SD大鼠称重后以3%戊巴比妥钠腹腔麻醉,连接小动物呼吸机,在左心耳下缘与肺动脉圆锥间距主动脉根部2~3 mm处,结扎左前降支深部,心电图可见相应导联sT段抬高,同时肉眼观察结扎区域心肌变白,局部心肌运动减弱提示结扎成功。假手术组仅分离左前降支,不结扎[4]。野生型假手术组(n=15),丝线穿过冠状动脉但不结扎,通过尾静脉注射生理盐水;野生型急性心肌梗死(AMI)对照组(n=15)制作大鼠急性心肌梗死模型;(TLR3-/-)假手术组(n=15),丝线穿过冠状动脉左室支但不结扎,通过尾静脉注射生理盐水;(TLR3-/-)急性心肌梗死对照组(n=15)制作大鼠急性心肌梗死模型。
检测生化指标急性心肌梗死模型制作2 h后,从腹主动脉采血5 mL,静置30 min,按照试剂盒说明操作,离心10 min(4℃,3000 r/min),进行血清分离,测定血清CK-MB及cTnI的含量,cTnI检测采用化学发光免疫分析法,CK-MB检测采用酶联免疫发光法。
1.3 Western blot法检测TLR3、NF-κB蛋白表达
制模结束后处死手术处理后的存活大鼠,提取按试剂盒说明书步骤提取总蛋白,碾磨心肌组织,BCA法蛋白进行蛋白定量,SDS-PAGE分离样品后转膜,常温下TBST封闭过夜,加入一抗后室温下免疫沉淀1 h,再加入兔抗小鼠辣根过氧化物酶标记的二抗2 h,显影,定影,扫描。
1.4统计学方法
采用SPSS 22.0 统计学软件处理。计量资料采用均值±标准差(x±s)表示,采用方差分析,P<0.05 为差异有统计学意义。
2 结果
2.1各组cTnI、CK-MB水平比较
与野生型急性心肌梗死组比较,(TLR3-/-)组反映心肌缺血损伤的cTnI、CK-MB含量降低,差异有统计学意义(P<0.05)。见表1、2。
2.2各组心肌组织TLR3、NF-κB蛋白表达
通过Western blot 法检测各组TLR3、NF-κB蛋白水平。与野生型假手术组比较,野生型AMI组TLR3、NF-κB蛋白表达均增高,两组比较差异有统计学意义;与野生型AMI组比较,(TLR3-/-)AMI组TLR3蛋白、NF-κB蛋白表达均降低,两组比较差异有统计学意义(P<0.05)。见表2、3。
3 讨论
急性心肌梗死致死致残率高,是严重危害人类健康的常见疾病之一,缺血心肌细胞线粒体功能障碍导致需氧细胞在代谢过程中产生一系列活性氧簇,诱导细胞氧化应激反应及炎症反应,线粒体内膜通透性改变,介导的心肌细胞凋亡、从而存活心肌细胞减少,从而导致急性心肌梗死患者梗死后心衰[5-9]。
Toll样受体是内源性免疫的一个重要分子家族,分为细胞外区和细胞内区,内区与白细胞介素-1受体结构相似的信号传导结构域组成,能识别侵入体内异物,不仅激活固有免疫应答,还可以激活适应性免疫应答,启动下游的信号通路,通过募集中性粒细胞、吞噬细胞诱导炎症反应,释放大量的炎症因子(如各种白介素因子)介导炎症的产生,不同的病原体入侵可激活相应的TLR,从而诱发初始免疫反应产生炎症。TLR3由904个氨基酸组成,其相对分子量约为125 ku,研究发现TLR3可诱导血管活性氧产生增加,可引起血管舒张功能受损、再内皮化减少加剧内皮细胞功能受损[10-14]。同时TLR3还可以识别病毒、细菌和受感染细胞中的核酸成分,诱导产生促炎症细胞因子,人类TLR3在人动脉粥样硬化组织起源的平滑肌细胞上的表达上调,可引起许多趋化因子和炎性细胞因子表达增加[15-17]。
核转录因子NF-κB作为可诱导并普遍存在的转录因子,可对相当多数量的基因发挥中心性转录调节作用,在免疫、炎症、细胞的生存、增殖分化和凋亡等方面起到广泛而重要作用。通过对肿瘤坏死因子、细胞介素(IL-1,IL-,6,IL-8)等基因的诱导性调节作用,诱导增加炎症反应[18-21]。
本实验通过TLR3基因敲除大鼠及野生型大鼠制作急性心肌梗死模型。野生型实验组经过急性心肌梗死处理,与假手术组比较,cTnI、CK-MB含量增加,TLR3蛋白及NF-κB表达增加。与野生型急性心肌梗死组比较,(TLR3-/- )急性心肌梗死组cTnI、CK-MB含量减少。TLR3蛋白减低,NF-κB表达降低。本实验结果提示急性心肌梗死可以刺激TLR3表达,进一步激活NF-κB,引起心肌炎症反应,引起心肌损伤;而在TLR3基因敲除组大鼠,TLR3蛋白表达下降,急性心肌缺血损伤后,NF-κB表达下降,cTnI、CK-MB较野生型含量减少,提示TLR3基因缺失可通过减少NF-κB表达减轻炎症反应,对急性梗死心肌起到保护作用。提示 TLR3在急性心肌梗死的发展过程中起着保护作用,但其确切的机制尚未完全明确,需要进一步明确,为治疗急性心肌梗死提供新的治疗靶点。
[参考文献]
[1] Hashmi S,Al-salam S.Acute myocardial infarction and myocardial ischemia reperfusion injurt:Acomparison[J]. Exppathol,2015,8(8):167-175.
[2] Al-Amran F,Shahkolahi M.Oxytocin ameliorates the immediate myocardial injury in rat heart transplant through downregulation of neutrophil-dependent myocardial apoptosis[J].Transplant Proc,2013,45(6):2506-2512.
[3] Chang G,Zhang D,Yu H,et al. Cardioprotective effects of exenatide against oxidative stress-induced injury[J].Mol Med,2013,8(27):1475-1481.
[4] 许丹,张春来,李霞,等 .制作大鼠急性心肌梗死模型的实验分析[J].中国煤炭工业医学杂志,2006,9(2):190-196.
[5] Smani T.New insights into the mechanisms under-1ying vascular and cardiac effects of urocortin[J].Cur Vase Pharmacol,2013,11(23):457-464.
[6] Ong SB,Samangouei P,Kalkhoyan SB,et al.The mito-chondrial permeability transition pore and its role in myocardial ischemia reperfusion injury[J]. Mol Cell Cardiol,2015,78(12):23-34.
[7] Thapalia BA,Zhou Z,Lin X,et al.Autophagy,a process within repeffusion injury:An update[J]. Clin Exp Pathol,2014,7(12):8322-8341.
[8] Chen-Scarabelli C,Agrawal PR,Saravolatz L,et al.The role and modulation of autophagy in experimental models ofmyocardial ischemia-reperfusion injury[J].Geriatr Cardiol,2014,9(16):338-348.
[9] Szabo A, Rajnavolgyi E.Collaboration of Toll-like and RIG-I-like receptors in human dendritic cells: tRIGgering antiviral innate immune responses[J]. Am J Clin Exp Immunol,2013,2(3):195-207.
[10] Ni H, Zhao W,Kong X,et al.Celastrol inhibits lipopoly-saccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-κappa B activation[J]. Acta Hae-matol,2013,131(2):102-111.
[11] 陳丹英,舒红兵. 细胞凋亡与NF-κB 激活的信号传导研究[J]. 北京大学学报(自然科学版),2012,42(2):141-145.
[12] Liu Q,Zhang J,Yu Y,et al.Effect of carvedilol on cardiomyocyte apoptosis in a rat model of myocardial infarction: A role for toll-like receptor 4[J]. Indian J Pharmacol,2013,45(5):458-463.
[13] 孙瑞利,张宇. Toll样受体3在病毒感染及细胞凋亡中的生物学功能[J]. 国际病理科学与临床杂志,2009,29(1):37-40.
[14] Anan I,Kiuru-Enari S.Investigation of AGE,their receptor and NF-kappaB activation and apoptosis in patients with ATTR and Gelsolin amyloidosis[J]. Histol Histopathol,2010,25(6):691-699.
[15] Meirav PF,Vered M,Michal CS,et al.Toll-like receptors and their ligands control mesenchymal stem cell funotions[J].Blood,2007,109(4):1422-1432.
[16] Tomchuck SL,Zwezolaryk KJ,Coffelt SB,et al.Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses[J].Stem cells,2008,26(1):99-107.
[17] Jing Sun, Ning Li, Kyu-Seon Oh,etal.Comprehensive siRNA-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use[J]. Sci Signal,2016,19(40):256-267.
[18] Hyun Sook Hwang,Su Jin Park,Cheon EJ,et al.Fibronectin fragment-induced expression of matrix metalloproteinases is mediated by MyD88-dependent TLR-2 signaling pathway in human chondrocytes[J].Arthritis Res Ther,2015,32(17):320-336.
[19] Hamerman,Jessica Pottle,Minjian Ni,et al.Negative regulation of TLR signaling in myeloid cells-implications for autoimmune diseases[J]. Immunol Rev,2016,269(1):212-227.
[20] Dov B. Ballak,Edwin J. P,et al.TLR-3 is Jan;present in human adipocytes,but its signalling is not required for obesity-induced infla,mmation in adipose tissue[J].PLoS One,2015,10(4):356-372.
[21] Kuiper J, Quax PH,Bot I.Anti-apoptotic serpins as therapeutics in cardiovascular diseases[J]. Cardiovasc He-matol Disord Drug Targets,2013,13(2):111-122.
(收稿日期:2017-09-25)