APP下载

废弃物能量回收技术用于城市固废高效管理的综述(下)

2018-03-16AtulKumarSamadder翻译张本民

西部皮革 2018年3期
关键词:填埋场甲烷废弃物

Atul Kumar,S.R.Samadder(翻译:张本民 )

(1.Departmentof Environmental Science&Engineering,Indian Instituteof Technology(Indian School of Mines),Dhanbad 826004,India;2.惠州市质量计量监督检测所,广东惠州516003)

(上接2018年1月第1期)

4.2 生物转换技术

生物转换技术基于微生物对MSW中的有机成分降解。许多研究者报道过这种技术当环境合适时用于废弃物能量回收(Pant et al.,2010)。通常废弃物中有机生物可降解物质含量高(易腐败的)、湿度大时,是一种首选处理方法。生物转换技术用于能量回收有两种方式,分别为厌氧消化和生物产甲烷。

4.2.1 厌氧消化

厌氧消化(或生物产甲烷)是一种含氧条件下微生物降解有机可降解物质的过程,可产生物气和稳定的污泥。所产生物气的质量取决于处理条件和底物组成;通常,生物气由 50% ~75% 的 CH4,25% ~50%CO2和1%~15%其它气体(如水蒸汽、NH3、H2S 等)(Surendra et al.,2014)。所产污泥可以用于土壤调节剂或作为农业领域上一种有机修护剂 (Pivato et al.,2016;Tam boneet al.,2009)。厌氧消化常被用来从可降解废弃物中回收营养和能量。据Aliet al.(2016)报道,厌氧消化的固体产物质量(作为一种肥料)主要跟废弃物原料的质量有关(废弃物中蛋白质、矿物质和维生素含量)。据Brow ne et al.(2014)报道,欧盟法规禁止将厌氧消化的固体产物作为肥料使用,因为废弃物原料中存在不理想物质。厌氧消化时,可降解MSW中有机物便会降解,通过一系列阶段转化为甲烷。最初的阶段称为水解,在此阶段MSW中复杂的有机化合物如碳水化合物、蛋白质和脂肪转化为可溶解有机物如糖类、氨基酸和脂肪酸。厌氧消化过程下一阶段为发酵,有机分子分解为乙酸、H2和CO2。最后阶段是产甲烷,在此阶段甲烷开始生成。有机物质转化为甲烷的详细流程如图4。厌氧消化过程主要分主两种类型,“湿消化”(干基含量10%~15%)和“干消化”(干基含量24%~40%)过程(Luning et al.,2003)。湿消化过程产生更多液态废弃物和较少固态产品。湿消化处理对反应器的体积要求不如干消化处理高。反应器的类型(单阶段和多阶段)、处理过程(干或湿处理)和甲烷产量取决于地区、废弃物原料质量和产物要求。

据估计,每吨MSW经厌氧消化在三周内甲烷的产量比填埋处理6~7年回收的甲烷量高出2~4倍(Ahsan,1999;Saxena et al.,2009)。据 M urphyet al.(2004)报道,以转化效率35%计算算,厌氧消化处理产生1m3生物气可以发电2.04kW h。若考虑MSW含60%有机物和40%水分,则每吨MSW可产甲烷150kg(Scarlat et al.,2015)。然而,处理过程中主要的问题是微生物反应周期太长(一般20~40天)(Pham et al.,2015)。有时,废弃物中存在含氮丰富的组分和阳离子(如钠、钾、钙)会增加氨和盐浓度,从而使产甲烷过程中出现有毒物。一些研究(Gom ez et al.,2006;Cristancho 和 Are llano,2006)建议,废弃物氮含量低的MSW、污水污泥、食物废弃物采用混合消化以降低氨浓度,增加处理过程中生物气的产量。表6总结了MSW有机组分在许多研究者报道过的不同操作条件下的甲烷产量。大多数研究者使用食物垃圾加入合适的培养液,进行气体最大化回收。使用厌氧消化技术所产生物气的质量可以通过移除CO2和其它微量气体改善,进而用作运输燃料,称为生物甲烷。这种生物气可以替代天然气在许多家庭和企业上应用 (Kasturirangan,2014;Appels et al.,2008)。早期,厌氧消化用于生活污水、工作废弃物、有机废弃物和动物粪便的处理,但现在广泛用于MSW能量回收,尤其在发展中国家,因其废弃物湿度比较大 (Yap and Nixon,2015)。Abbas et al.(2017)和 Aliet al.(2013a,b)评价了生物气回收的可行性,发现通过厌氧消化技术回收生物气经济、环境上具有可持续性。

4.3 填埋法

卫生填埋是指为了减少环境负面影响,通过生物气回收和沥出液管理的方式在陆地上有控制的处理废弃物(图5)。然而,非卫生填埋提供了一种更简单更廉价处理大量增加废弃物的方式,在发展中国家是最常见的处理方法,将为对环境产生很严重的危害(W ang and Geng,2015)。前人的研究表明,与其它废弃物管理方法相比填埋产生的环境影响最大(Cherubiniet al.,2009;Em ery et al.,2007;M archettini et al.,2007;ISWA,2012)。据报道,大部分发展中国家城市,在城市郊外的低洼区域处理废弃物 (Talyan et al.,2008;Kum ar and Chakrabarti,2010)。当考虑到如环境影响、健康影响、土地退化、地下水污染的因素时,填埋法将成为最糟糕的选择。然而,发达国家已经开始通过立法、减排、循环利用抵制废弃物填埋处理。填埋产生的沥液(一种成分复杂,含有难降解化合物的深色废水,)是一种从填埋物或垃圾储存站释放的主要污染物 (Müller et al.,2015),会污染周围地表河道和地下含水层。据专家介绍,仅总废弃物的10%~15%应该采用填埋法,而且应是土地有限的城市最后的选择。

表6 MSW厌氧消化甲烷产量

4.3.1 填埋产气模拟

填埋场沉积物中残留的有机物质经历了复杂的生物和化学降解,结果有填埋气体(LFG)产生。有机物质降解产生LFG发生在5个不同阶段(Noor et al.,2013)。第一阶段是水解/好氧消化,在此阶段好氧菌将复杂有机物分解为CO2和H2O,第二阶段是水解和发酵,在兼性细菌存在下,水溶性有机成分分解为CO2、H2、NH3和有机酸。第三阶段是酸化/乙酸化,第二阶段产生的有机酸通过厌氧菌转化为乙酸、甲酸、乙醇、H2和CO2。在第四阶段(甲烷生成),产甲烷菌消耗第三阶段产物,并且主要产生CH4、CO2,以及少量其他微量气体。最后阶段是氧化,本阶段在需氧条件下CH4转化为CO2和H2O。填埋场内部LFG产率受许多因素影响,如填埋场类型、废弃物组成、气候条件(温度和降水)、含水量和废弃物存放时间(Scarlat et al.,2015)。LFG中含50%~60%甲烷(Unnikrishnan and Singh,2010)并且被认为是人工产甲烷的主要来源之一。据估计,每年从垃圾填埋场产生甲烷气体为3000~7000万吨(Johariet al.,2012)。因此,从填埋场回收甲烷用于发电或其它用途可以帮助减排。有时LFG回收技术上不可行,因为那种情况LFG当场就已被燃烧。但是,在这种情况下有必要对填埋场内部LFG预测。推荐的方法涉及到LFG生成模拟。有许多可以使用的模型预测填埋场甲烷的释放。表7描述一些广泛使用的模型(七种)。然而,由于不同国家的废弃物组成不同,对同一种填埋场来说不同的模型会得出不同结果,这些模型已经被开发可为该地区提供准确的结果。在这七种模型中,六种基于欧盟情况,一种基于美国情况。这些模型减少了冗长的测量技术,通常应用于垃圾填埋场甲烷含量预测。尽管TNO模型根据荷兰废弃物特点而建立,但这种模型也可以用于其他国家LFG预测,因为在观测值和计算值之间它的相对误差很低(22%)。在一项研究中,据估计,1吨MSW产生80m 3LFG,到2020年时,仅中国或许就能为全球LFG排放贡献100亿m3(Qu et al.,2009)。

5 W T E技术能量回收潜力和经济情况

目前,中国每年废弃物产量3亿吨(W orld Energy Resources,2016),废弃物中包含较多低热值食物垃圾,以及与其他发展中国家类似的高湿度组分。所以,发达国家使用的传统焚烧厂在此条件下处理效果不佳。因而,中国已经在焚烧厂基础上发展了循环流化床应对这种问题,目前28套此种设备每天处理800吨MSW成功发电(W orld Energy Resources,2016;Zhao et al.,2016)。据 Cheng et al.(2007)报道,基于循环流化床焚烧器的壁炉更适用于高湿度低能量的MSW。在埃塞俄比亚一种容量50MW的废弃物焚烧厂(非洲撒哈拉以南第一个WTE设备)预计2017年投入使用,每年可以处理35万吨废弃物。然而,由于许多问题存在,如MSW热值低,缺乏当地专业技术以及能量价格低,该厂或许运营成本不足(W orld Energy Resources,2016)。据 Perkoulidis et al.(2010)报道,在希腊中部一套WTE设备净转化率为22.5%时预计每吨MSW产电0.55MW。按照估计,到2020年马来西亚预计仅从LFG中可产电2.63×109kW h,将为马来西亚产生26200万美元的税收(Noor et al.,2013)。希腊直辖市五所厌氧消化厂的产能潜力为695kW h/吨,平均操作成本为85MYM/吨(Karagiannidis和Perkoulidis,2009)。巴西仅MSW填埋厂的产能潜力约为每天660MW电力。本研究综述了100多篇2010~2017年发表,关于W TE技术的文献,其中一些针对不同国家WTE技术选择的重要点评文献总结如表8。大多数表8所列研究中,WTE选择被认为是一种对环境影响最小的潜力技术。

前人发表的文献分析了不同WTE技术的成本 (Ouda et al.,2016;Yap和Nixon,2015;Tolis et al.,2010),如表9。资本成本是首要投资成本如土地征收、设备采购、原材料需求;间接成本包括计划成本、合同支持和发展阶段的技术金融服务。操作成本是日常运行成本如劳务和维护成本。一家WTE厂的资本成本与需要处理的废弃物质量、采用的技术和厂的位置有关。一套WTE设备的平均寿命一般认为30年。表9为所需的成本范围,对发达和发展中国家均有效。一系列成本范围中低值代表发展中国家(如印度)所需成本,高值代表在发达国家的成本(如英国)(Yap and Nixon,2015)。表9显示的成本为估算成本,因为实际成本还与许多其它因素关,如政府激励、原材料和熟练工人的可用性。(Ouda et al.,2016)。

6 环境和健康影响

MSW焚烧或许导致空气污染(由于SOX、NOX、COX、二噁英和呋喃的排放),土壤和水污染(由于飞灰和底灰中存在重金属)。但是,用于焚烧的污染控制技术和能量回收系统已经大大发展,使其成为一种有吸引力的MSWM选择(Dam gaard et al.,2010)。焚烧厂使用的空气污染设备主要捕获颗粒物、氧化氮、二噁英和呋喃,对环境的影响比传统火力发电厂还小(Liam sanguan和Gheew ala,2007)。

大量研究报道了废弃物焚烧场所能感知到的健康风险。甚至发达国家(如英国)也正面对公共抵制,因为焚烧厂的排放物带来了可感知的健康危害(Nixon et al.,2013a,b)。尽管焚烧器潜在排放大量污染物,但主要关注的已经是称为“二噁英”类的有机化合物,如多氯代二苯并二恶英、多氯代二苯并呋喃和多氯联苯,均由不完全燃烧产生。国际癌症研究机构通过实验室动物实验和对生活在工业区的群体研究认为二噁英为高度致癌物(Giusti,2009)。然而,关于焚烧场对公共健康的影响许多研究报道了不全面和无说服力的结果 (W orld Energy Resources,2016)。一种开发和控制良好的系统对废弃物焚烧项目成功有效进行是非常重要的。

7 对气候变化的影响

关于WTE厂和其它MSWN选择对气候变化影响的研究大都基于发达国家(UNEP,2010)。气候变化是一个全球性问题需要各国共同努力解决。实施技术减少温室气体排放是非常重要的,缓解以传统方式产能耗能带来的气候变化(IPCC,2007)。MSW已经被认为是环境中第三大人工甲烷来源,占全球人工温室气体排放的3%~4%(Annepu,2012;IPCC,2006),总废弃物部分将有18%的全球甲烷气体排放 (Aleluia and Ferro,2016)。目前,还没有完全建立的方法直接测量填埋场甲烷排放量,所以基于大量假设的理论模型被使用(UNEP,2010)。甲烷含能高,需要一种模式巧妙地捕获后将其作为能源,从而避免大量潜在温室气体排放(比CO2强21倍)。废弃物最少化以及循环利用可有效减少温室气体排放 (Aliet al.,2013a,b)。据Aracil et al.(2017)报道,MSW(非循环)所产生物燃料将对气候变化带来积极影响。W TE技术的全球变暖潜力如表10。W ilson et al.(2010)估计使用3Rs(减排、重用、循环)原则综合管理固体废弃物可以减少15%~15%全尔温室气体排放。

表7 甲烷生成潜力的模型描述

8 结论

本文对用于能量回收的不同WTE技术进行了全面综述。尝试总结了目前全球WTE部门的案例。如果采用WTE技术,MSW可被认为最有潜力的可再生能源之一,不仅可以减少对传统能源的依赖,满足不断增加的能源需求,也可以减少MSWM的问题。综述了所有可用WTE技术后,可以看出在发展中国家最可行的MSWN方法是厌氧消化有机废弃物,焚烧混合MSW(除了可生物降解废弃物),热解和煤气化特定类型废弃物(塑料、轮胎、电子设备、电子废弃物、食物废弃物等),以及填埋惰性废弃物。然而MSW的特性和组成在选择合适的W TE技术时具有重要作用。

表8 可用WTE选择案例研究的点评

表9 WTE技术成本比较

表10 不同废弃物处理选择的全球变暖潜力

通过改进WTE技术用于MSWM可以大大减少温室气体排放。在发达国家WTE技术已广泛用于高效管理MSW。然而,在大多数发展中国家WTE设备缺少合适的基础设施、污染控制系统和维护技术。本研究发现在多数发达国家WTE部门已完善并优先使用,技术成熟。发达国家更加注重处理效率、循环/回收和污染控制策略。在发展中国家,根据国家法规和需求开发WTE设备很重要。WTE厂在一些发展中国家已经建立,只是很小规模。

政府政策和法规,金融支持,改善技术将加强发展中国家WTE设备的投产使用。本文将帮助发达和发展中国家读者和战略决策者识别最佳W TE技术。

(作者感谢丹巴德印度理工学院<印度矿业学院>,环境科学与工程系给予科研工作支持。)

[1]Abbas,T.,Ali,G.,Adil,S.A.,Bashir,M.K.,Kam ran,M.A.,2017.Econom ic analysis of biogas adoption technology by rural farmers:the case of Faisalabad district in Pakistan.Renew.Energy 107,431-439.

[2]Abila,N.,2014.Managing municipal wastes for energy generation in N igeria.Renew.Sustain.Energy Rev.37,182-190.

[3]Abu-Qudais,M.D.,Abu-Qdais,H.A.,2000.Energy content of municipal solid waste in Jordan and its potential utilization.Energy Convers.M anage.41(9),983-991.

[4]Achillas,C.,Vlachokostas,C.,M oussiopoulos,N.,Banias,G.,Kafetzopoulos,G.,Karagiannidis,A.,2011.Social acceptance for the development of a waste-to-energy plant in an urban area.Resour.Conserv.Recycl.55(9),857-863.

[5]Ahsan,N.,1999.Solid waste management plan for Indian megacities.Indian J.Environ.Prot.19,90-95.

[6]Aleluia,J.,Ferr?o,P.,2016.Characterization of urban waste management practices in developing Asian countries:a new analytical framework based on waste characteristicsand urban dimension.W aste M anage.58,415-429.

[7]Ali,G.,Bashir,M.K.,Ali,H.,Bashir,M.H.,2016.U tilization of rice husk and poultry wastes for renewable energy potential in Pakistan:an economic perspective.Renew.Sustain.Energy Rev.61,25-29.

[8]Ali,G.,Abbas,S.,Qamer,F.M.,2013a.How effectively low carbon society development modelscontribute to climate change m itigation and adaptation action plans in Asia.Renew.Sustain.Energy Rev.26,632-638.

[9]Ali,G.,Abbas,S.,Tanikawa,H.,Ahmed,S.,M ollah,N.A.,Qamer,F.M.,2013b.Comparative cost analysisof waste recycling for best energy alternative.J.Biodivers.Environ.Sci.3(8),111-120.

[10]Ali,G.,N itivattananon,V.,Abbas,S.,Sabir,M.,2012.Green waste to biogas:Renewableenergy possibili ties for Thailand’s green markets.Renew.Sustain.Energy Rev.16(7),5423-5429.

[11]Ali,G.,N itivattananon,V.,Molla,N.,Hussain,A.,2010.Selection of appropriate technology for solid waste management:a case of Thammasat hospital,Thailand.W orld Acad.Sci.Eng.Technol.40,251-254.

[12]Allegrini,E.,Maresca,A.,O lsson,M.E.,Holtze,M.S.,Boldrin,A.,Astrup,T.F.,2014.Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.W aste Manage.34(9),1627-1636.

[13]American Society of Mechanical Engineers(ASME),2008.Waste-to-Energy:A Renewable Energy Source from Municipal Solid W aste;W hite Paper Subm itted to Congress;New York,NY.

[14]Annepu,R.K.,2012.Sustainable solid waste management in I ndia.Columbia University,New York.

[15]Appels,L.,Baeyens,J.,Degrève,J.,Dew il,R.,2008.Principlesand potential of the anaerobic digestion of waste-activated sludge.Prog.Energy Combust.Sci.34(6),755-781.

[16]Appels,L.,Lauwers,J.,Degrève,J.,Helsen,L.,Lievens,B.,W illems,K.,Dew il,R.,2011.

[17]Anaerobic digestion in global bio-energy production:potential and research challenges.Renew.Sustain.Energy Rev.15(9),4295-4301.

[18]Aracil,C.,Haro,P.,Giuntoli,J.,O llero,P.,2017.Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe.J.Clean.Prod.142,2887-2900.

[19]Arafat,H.A.,Jijakli,K.,Ahsan,A.,2015.Environmental performance and energy recovery potential of five processes for municipal solid waste treatment.J.Clean.Prod.105,233-240.

[20]Arafat,H.A.,Jijakli,K.,2013.Modeling and comparative assessment of municipal solid waste gasification for energy production.W aste M anage.33(8),1704-1713.

[21]Baggio,P.,Baratieri,M.,Gasparella,A.,Longo,G.A.,2008.Energy and environmental analysisof an inno vative system based on municipal solid waste(MSW)pyrolysisand combined cycle.Appl.Therm.Eng.28,136-144.

[22]Bajic′,B.Z.,Dodic′,S.N.,Vuc ˇurovic′,D.G.,Dodic′,J.M.,Grahovac,J.A.,2015.W aste-to-energy status in Serbia.Renew.Sustain.Energy Rev.50,1437-1444.

[23]Baran,B.,M am is,M.S.,Alagoz,B.B.,2016.U tilization of energy from waste potential in Turkey as distributed secondary renewable energy source.Renew.Energy 90,493-500.

[24]Branchini,L.,2015.W aste-to-Energy:Advanced Cycles and New Design Concepts for Efficient Power Plants.Springer,Italy.

[25]Browne,J.D.,Allen,E.,Murphy,J.D.,2014.Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation.Appl.Energy 128,307-314.

[26]Brunner,P.H.,Rechberger,H.,2015.W aste to energy-key element for sustainable waste management.W aste Manage.37,3-12.

[27]Charters,W.W.S.,2001.Developing markets for renewable energy technologies.Renew.Energy 22(1),217-222.

[28]Chen,D.,Christensen,T.H.,2010.Life-cycleassessment(EASEWASTE)of two municipal solid waste incineration technologies in China.W aste Manage.Res.28(6),508-519.

[29]Chen,Y.,Cheng,J.J.,Creamer,K.S.,2008.Inhibition of anaerobic digestion process:a review.Biores.Technol.99(10),4044-4064.

[30]Cheng,H.,Hu,Y.,2010.Municipal solid waste(MSW)as a renewable source of energy:Current and future practices in China.Biores.Technol.101(11),3816-3824.

[31]Cheng,H.,Zhang,Y.,M eng,A.,Li,Q.,2007.M unicipal solid waste fuelled power generation in China:a case study of waste-to-energy in Changchun city.Environ.Sci.Technol.41(21),7509-7515.

[32]Cherubini,F.,Bargigli,S.,U lgiati,S.,2009.Life cycle assessment(LCA)of waste management strategies:landfilling,sorting plant and incineration.Energy 34(12),2116-2123.

[33]Cristancho,D.E.,Arellano,A.V.,2006.Study of the operational conditions for anaerobic digestion of urban solid wastes.W aste M anage.26(5),546-556.

[34]Curry,N.,Pillay,P.,2012.Biogasprediction and design of a food waste to energy system for the urban environment.Renew.Energy 41,200-209.

[35]Damgaard,A.,Riber,C.,Fruergaard,T.,Hulgaard,T.,Christensen,T.H.,2010.Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.W aste Manage.30(7),1244-1250.

[36]Defra,2013.Incineration of M unicipal Solid W aste.Department for Environment,Food and Rural Affairs.(accessed 20.01.2017).

[37]Eddine,B.T.,Salah,M.M.,2012.Solid waste as renew able sourceof energy:current and future possibility in Algeria.Int.J.Energy Environ.Eng.3(1),1-12.

[38]Emery,A.,Davies,A.,Griffiths,A.,W illiams,K.,2007.Environmental and econom ic modelling:a case study of municipal solid waste management scenarios in W ales.Resour.Conserv.Recycl.49(3),244-263.

[39]ERC,2014.The 2014 ERC Directory of W aste-To-Energy Facilities. (accessed 05.03.2016).

[40]FAO Statistics,2013.Food and Agriculture Organi sation of the United Nations.(accessed 19.08.2016).

[41]Fazeli,A.,Bakhtvar,F.,Jahanshaloo,L.,Sidik,N.A.C.,Bayat,A.E.,2016.Malaysia’s stand on municipal solid waste conversion to energy:a review.Renew.Sustain.Energy Rev.58,1007-1016.

[42]Fountoulakis,M.S.,Drakopoulou,S.,Terzakis,S.,Georgaki,E.,Manios,T.,2008.Potential for methane production from typical Mediterranean agro-industrial by-products.Biomass Bioenerg.32(2),155-161.

[43]Fruergaard,T.,Astrup,T.,2011.Optimal utilization of waste-to-energy in an LCA perspective.W aste M anage.31(3),572-582.

[44]Giusti,L.,2009.A review of waste management practices and their impact on human health.W aste M anage.29(8),2227-2239.

[45]Gohlke,O.,M artin,J.,2007.Drivers for innovation in waste-to-energy technology.W aste Manage.Res.25(3),214-219.

[46]Gomez,X.,Cuetos,M.J.,Cara,J.,Moran,A.,Garcia,A.I.,2006.Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes:conditions for m ixing and evaluation of the organic loading rate.Renew.Energy 31(12),2017-2024.

[47]González,J.F.,Encinar,J.M.,Canito,J.L.,Rodr?′guez,J.J.,2001.Pyrolysis of automobile tyre waste.Influence of operating variablesand kineticsstudy.J.Anal.Appl.Pyrol.58,667-683.

[48]Gregory,R.G.,Attenborough,G.M.,Hall,D.H.,Deed,C.,2003.The validation and development of an integrated landfill gas risk assessment model GasSim.Sardinia Proc.

[49]Haider,M.R.,Yousaf,S.,M alik,R.N.,Visvanathan,C.,2015.Effect of m ixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.Biores.Technol.190,451-457.

[50]H la,S.S.,Roberts,D.,2015.Characterisa tion of chem ical composition and energy content of green waste and municipal solid waste from Greater Brisbane,Australia.W aste Manage.41,12-19.

[51]Hoornweg,D.,Bhada-Tata,P.,2012.W hat a W aste:A Global Review of Solid W aste Management.U rban Development Series Know ledge Papers,W orld Bank,W ashington DC.

[52]Hossain,H.Z.,Hossain,Q.H.,Monir,M.M.U.,Ahmed,M.T.,2014.M unicipal solid waste(MSW)as a source of renewable energy in Bangladesh:revisit ed.Renew.Sustain.Energy Rev.39,35-41.

[53]Intergovernmental Panel on Climate Change(IPCC),2006.2006 IPCC Guidelines for National Greenhouse Gas Inventories.Japan,IGES.

[54]Intergovernmental Panel on Climate Change(IPPC),2007.Climate Change 2007:Synthesis Report.UNEP,WMO:2007.(accessed 20.12.2016).

[55]International Renewable Energy Agency(IRENA),2016.Renewable Energy Statistics. (accessed 21.03.2017).

[56]Ionescu,G.,Rada,E.C.,Ragazzi,M.,M a?rculescu,C.,Badea,A.,Apostol,T.,2013.Integrated municipal solid waste scenario model using advanced pre-treatment and waste to energy processes.Energy Con vers.Manage.76,1083-1092.

[57]ISWA,2012.W aste-to-energy State-of-the-art-report.International Solid W aste Association,p.2012.Jamasb,T.,Nepal,R.,2010.Issues and options in waste management:a social cost-benefit analysis of waste-to-energy in the UK.Resour.Conserv.Recycl.54 (12),1341-1352.

[58]Jeswani,H.K.,Azapagic,A.,2016.Assessing the envi ronmental sustainability of energy recovery from municipal solid waste in the UK.W aste M anage.50,346-363.

[59]Johari,A.,Ahmed,S.I.,Hashim,H.,Alkali,H.,Ram li,M.,2012.Econom ic and environmental benefits of landfill gas from municipal solid waste in M alaysia.Renew.Sustain.Energy Rev.16(5),2907-2912.

[60]Kalyani,K.A.,Pandey,K.K.,2014.W aste to energy statusin India:ashort review.Renew.Sustain.Energy Rev.31,113-120.

[61]Karagiannidis,A.,Perkoulidis,G.,2009.A multi-cri teria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.Biores.Technol.100(8),2355-2360.

[62]Kasturirangan,K.,2014.Report of the Task Force on W aste to Energy,vol.I.(accessed 17.03.2016).

[63]Kathiravale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,Rahman,R.A.,2003.M odeling the heating value of municipal solid waste.Fuel 82(9),1119-1125.

[64]Kathirvale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,2004.Energy potential from municipal solid waste in M alaysia.Renew.Energy 29(4),559-567.

[65]Khan,D.,Kumar,A.,Samadder,S.R.,2016.Impact of socioeconom ic status on municipal solid waste generation rate.W aste M anage.49,15-25.

[66]Kikuchi,R.,Gerardo,R.,2009.More than a decade of conflict between hazardous waste management and public resistance:a case study of NIMBY syndrome in Souselas(Portugal).J.Hazard.Mater.172(2),1681-1685.

[67]Komemoto,K.,Lim,Y.G.,Nagao,N.,Onoue,Y.,Niwa,C.,Toda,T.,2009.Effect of temperature on VFA’sand biogasproduction in anaerobic solubilization of food waste.W aste M anage.29(12),2950-2955.

[68]Komilis,D.,Evangelou,A.,Giannakis,G.,Lymperis,C.,2012.Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.W aste M anage.32(3),372-381.

[69]Kom ilis,D.,Kissas,K.,Symeonidis,A.,2014.Effect of organic matter and moisture on the calorific value of solid wastes:an update of the Tanner diagram.W aste M anage.34(2),249-255.

[70]Korai,M.S.,M ahar,R.B.,Uqaili,M.A.,2016.Optim ization of waste to energy routes through biochem ical and thermochem ical treatment optionsof municipal solid waste in Hyderabad,Pakistan.Energy Convers.Manage.124,333-343.

[71]Kothari,R.,Tyagi,V.V.,Pathak,A.,2010.W aste-to-energy:A way from renewable energy sourcesto sustainable development.Renew.Sustain.Energy Rev.14(9),3164-3170.

[72]Kumar,A.,Samadder,S.R.,in press.An empirical model for prediction of household solid waste generation rate-a case study of Dhanbad India.W aste M anage.(in press)

[73]Kumar,S.,Chakrabarti,T.,2010.Effective Municipal Solid Waste Management in India.INTECH Open Access Publisher.

[74]Lee,V.K.C.,Kwok,K.C.M.,Cheung,W.H.,M cKay,G.,2007.Operation of a municipal solid waste co-combustion pilot plant.Asia-Pac.J.Chem.Eng.2(6),631-639.

[75]Leme,M.M.V.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Lopes,B.M.,Ferreira,C.H.,2014.Techno-eco nom ic analysis and environmental impact assessment of energy recovery from Municipal Solid W aste(MSW)in Brazil.Resour.Conserv.Recycl.87,8-20.

[76]Li,Y.,Zhao,X.,Li,Y.,Li,X.,2015.W aste incineration industry and development policies in China.W aste M anage.46,234-241.

[77]Liamsanguan,C.,Gheewala,S.H.,2007.Environmental assessment of energy production from munic ipal solid waste incineration.Int.J.Life Cycle Assess.12(7),529-536.

[78]Lianghu,S.,Huang,S.,Dongjie,N.,Xiaoli,C.,Yongfeng,N.,Youcai,Z.,2014.M unicipal solid waste management in China.In:Pariatamby,A.,Tanaka,M.(Eds.),Municipal Solid W aste M anagement in Asia and the Pacific Islands:Challengesand Strategic Solutions.Springer-Verlag,Singapore,pp.95-112.

[79]Liu,Z.,Liu,Z.,Li,X.,2006.Statusand prospect of the application of municipal solid waste incineration in China.Appl.Therm.Eng.26(11),1193-1197.

[80]Lombardi,L.,Carnevale,E.,Corti,A.,2015.A review of technologiesand performancesof thermal treatment systems for energy recovery from waste.Waste Manage.37,26-44.

[81]Lu,J.W.,Zhang,S.,Hai,J.,Lei,M.,in press.Status and perspectives of municipal solid waste incineration in China:a comparison w ith developed regions.W aste M anage.(in press)

[82]Luning,L.,Van Zundert,E.H.M.,Brinkmann,A.J.F.,2003.Comparison of dry and wet digestion for solid waste.W ater Sci.Technol.48(4),15-20.

[83]Luz,F.C.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Andrade,R.V.,Leme,M.M.V.,del O lmo,O.A.,2015.Techno-econom ic analysisof municipal solid waste gasification for electricity generation in Brazil.Energy Convers.Manage.103,321-337.

[84]Ma,J.,Duong,T.H.,Sm its,M.,Verstraete,W.,Carballa,M.,2011.Enhanced biomethanation of kitchen waste by different pre-treatments.Biores.Technol.102(2),592-599.

[85]Marchettini,N.,Ridolfi,R.,Rustici,M.,2007.An environmental analysis for comparing waste manage ment options and strategies.W aste Manage.27(4),562-571.

[86]Macias-Corral,M.,Samani,Z.,Hanson,A.,Sm ith,G.,Funk,P.,Yu,H.,Longworth,J.,2008.Anaerobic diges tion of municipal solid waste and agricultural waste and the effect of co-digestion w ith dairy cow manure.Biores.Technol.99(17),8288-8293.

[87]Medina,M.,1997.Theeffect of incomeon municipal solid waste generation rates for countries of varying levelsof economic development:amodel.J.Solid W aste Technol.M anage.24(3),149-155.

[88]Melikoglu,M.,2013.Vision 2023:assessing the feasi bility of electricity and biogas production from municipal solid waste in Turkey.Renew.Sustain.Energy Rev.19,52-63.

[89]Meylan,G.,Spoerri,A.,2014.Eco-efficiency assessment of options for metal recovery from incineration residues:a conceptual framework.W aste M anage.34(1),93-100.

[90]Mohee,R.,Mudhoo,A.,2012.Energy from Biomass in M auritius:Overview of Research and Applications.In:W aste to Energy.Springer,London,pp.297-321.

[91]Montejo,C.,Costa,C.,Ramos,P.,del Car men Márquez,M.,2011.Analysis and comparison of municipal solid wasteand reject fraction as fuels for incineration plants.Appl.Therm.Eng.31 (13),2135-2140.

[92]Morf,L.S.,Gloor,R.,Haag,O.,Haupt,M.,Skutan,S.,Di Lorenzo,F.,B?ni,D.,2013.Precious metals and rare earth elements in municipal solid wastesourcesand fate in a Sw issincineration plant.W aste M anage.33(3),634-644.

[93]Müller,G.T.,Giacobbo,A.,dos Santos Chiaramonte,E.A.,Rodrigues,M.A.S.,Meneguzzi,A.,Bernardes,A.M.,2015.The effect of sanitary landfill leachateaging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process.W aste Manage.36,177-183.

[94]M urphy,J.D.,M cKeogh,E.,2004.Technical,econom ic and environmental analysis of energy produc tion from municipal solid waste.Renew.Energy 29(7),1043-1057.[96]Murphy,J.D.,M cKeogh,E.,Kiely,G.,2004.Technical/econom ic/environmental analysis of biogasutilisation.Appl.Energy 77(4),407-427.

[95]Ngoc,U.N.,Schnitzer,H.,2009.Sustainable solutions for solid waste management in Southeast Asian countries.W aste Manage.29,1982-1995.

[96]Nguyen,H.H.,Heaven,S.,Banks,C.,2014.Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam.Int.J.Energy Environ.Eng.5(4),365-374.

[97]Nixon,J.D.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013a.Evaluation of options for energy recovery from municipal solid waste in Indiausing thehierarchical analytical network process.Energy 59,215-223.

[98]Nixon,J.D.,W right,D.G.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013b.A comparative as sessment of waste incinerators in the UK.W aste Manage.33(11),2234-2244.

[99]Noor,Z.Z.,Yusuf,R.O.,Abba,A.H.,Hassan,M.A.A.,Din,M.F.M.,2013.An overview for energy recovery from municipal solid wastes(MSW)in M alaysia scenario.Renew.Sustain.Energy Rev.20,378-384.

[100]Oonk,J.,Boom,A.,1995.Landfill Gas Formation,Recovery and Em issions.TNO Inst.of Environmetal and Energy Technology,The Hague,pp.95-203.

[101]Ouda,O.K.M.,Raza,S.A.,Nizam i,A.S.,Rehan,M.,Al-W aked,R.,Korres,N.E.,2016.W aste to energy potential:a case study of Saudi Arabia.Renew.Sustain.Energy Rev.61,328-340.

[102]Paleologos,E.K.,Caratelli,P.,El Am rousi,M.,2016.W aste-to-energy:an opportunity for a new industrial typology in Abu Dhabi.Renew.Sustain.Energy Rev.55,1260-1266.

[103]Panepinto,D.,Tedesco,V.,Brizio,E.,Genon,G.,2014.Environmental performances and energy efficiency for MSW gasification treatment.W aste Biomass Valorizat.6(1),123-135.

[104]Pant,D.,Van Bogaert,G.,Diels,L.,Vanbroekhoven,K.,2010.A review of the substrates used in m icrobial fuel cells(MFCs)for sustainable energy production.Biores.Technol.101(6),1533-1543.

[105]Pantaleo,A.,De Gennaro,B.,Shah,N.,2013.Assess ment of optimal size of anaerobic co-digestion plants:an application to cattle farms in the province of Bari(Italy).Renew.Sustain.Energy Rev.20,57-70.

[106]Patumsawad,S.,Cliffe,K.R.,2002.Experimental study on fluidised bed combustion of high moisture municipal solid waste.Energy Convers.Manage.43(17),2329-2340.

[107]Perkoulidis,G.,Papageorgiou,A.,Karagiannidis,A.,Kalogirou,S.,2010.Integrated assessment of a new W aste-to-Energy facility in Central Greece in the context of regional perspectives.W aste M anage.30(7),1395-1406.

[108]Pham,T.P.T.,Kaushik,R.,Parshetti,G.K.,Mahmood,R.,Balasubramanian,R.,2015.Food waste-to-energy conversion technologies:current status and future directions.W aste Manage.38,399-408.

[109]Pivato,A.,Vanin,S.,Raga,R.,Lavagnolo,M.C.,Barausse,A.,Rieple,A.,Laurent,A.,Cos su,R.,2016.Use of digestate from a decentralized on-farm biogasplant as fertilizer in soils:an ecotoxicological study for future indicatorsin risk and life cycle assessment.Waste Manage.49,378-389.

[110]Psomopoulos,C.S.,Bourka,A.,Themelis,N.J.,2009.W aste-to-energy:a review of the statusand benefits in USA.W aste M anage.29 (5),1718-1724.

[111]Qu,X.Y.,Li,Z.S.,Xie,X.Y.,Sui,Y.M.,Yang,L.,Chen,Y.,2009.Survey of composition and generation rate of household wastes in Beijing,China.W aste M anage.29(10),2618-2624.

[112]Reddy,P.J.,2011.M unicipal Solid W aste M anage ment:Processing,Energy Recovery,Global Examples.CRC Press,Taylor&Francis group,New Jersey.

[113]Ren,X.,Che,Y.,Yang,K.,Tao,Y.,2016.Risk percep tion and public acceptance toward a highly protested W aste-to-Energy facility.W aste M anage.48,528-539.

[114]Saxena,R.C.,Adhikari,D.K.,Goyal,H.B.,2009.Biomass-based energy fuel through biochem ical routes:a review.Renew.Sustain.Energy Rev.13(1),167-178.

[115]Scano,E.A.,Asquer,C.,Pistis,A.,Ortu,L.,Demontis,V.,Cocco,D.,2014.Biogas from anaerobic digestion of fruit and vegetable wastes:experimental results on pilot-scale and prelim inary performan ceevalua tion of a full-scale power plant.Energy Convers.Manage.77,22-30.

[116]Scarlat,N.,M otola,V.,Dallemand,J.F.,Monforti-Ferrario,F.,M ofor,L.,2015.Evaluation of energy potential of municipal solid waste from African urban areas.Renew.Sustain.Energy Rev.50,1269-1286.

[117]Scharff,H.,Jacobs,J.,2006.Applying guidance for methane em ission estimation for landfills.W aste M anage.26(4),417-429.

[118]Shafiee,S.,Topal,E.,2009.W hen w ill fossil fuel reserves be dim inished?Energy Policy 37(1),181-189.

[119]Shekdar,A.,2009.Sustainable solid waste management:an integrated approach for Asian Countries.W aste M anage.29,1438-1448.

[120]Shi,H.,Mahinpey,N.,Aqsha,A.,Silbermann,R.,2016.Characterization,thermochem ical conversion studies,and heating value modeling of municipal solid waste.Waste Manage.48,34-47.

[121]Singh,R.P.,Tyagi,V.V.,Allen,T.,Ibrahim,M.H.,Kothari,R.,2011.An overview for exploring the possibilities of energy generation from municipal solid waste(MSW)in Indian scenario.Renew.Sustain.Energy Rev.15(9),4797-4808.

[122]Stehlik,P.,2009.Contribution to advances in waste-to-energy technologies.J.Clean.Prod.17(10),919-931.

[123]Surendra,K.C.,Takara,D.,Hashimoto,A.G.,Khanal,S.K.,2014.Biogas as a sustainable energy source for developing countries:opportunitiesand challenges.Renew.Sustain.Energy Rev.31,846-859.

[124]Tabasová,A.,Kropác ˇ,J.,Kermes,V.,Nemet,A.,Stehlík,P.,2012.W aste-to-energy technologies:Impact on environment.Energy 44(1),146-155.

[125]Talyan,V.,Dahiya,R.P.,Sreekrishnan,T.R.,2008.State of municipal solid waste management in Delhi,the capital of India.W aste M anage.28(7),1276-1287.

[126]Tambone,F.,Genevini,P.,D’Imporzano,G.,Adani,F.,2009.Assessing amendment propertiesof digestate by studying the organic matter composi tion and the degree of biological stability during the anaerobic digestion of the organicfraction of MSW.Biores.Technol.100(12),3140-3142.

[127]Tan,S.T.,Hashim,H.,Lim,J.S.,Ho,W.S.,Lee,C.T.,Yan,J.,2014.Energy and em issionsbenefitsof renewable energy derived from municipal solid waste:analysis of a low carbon scenario in Malaysia.Appl.Energy 136,797-804.

[128]Tanaka,M.,2014.Sustainable society and municipal solid waste management.In:Pariatamby,A.,Tanaka,M.(Eds.),M unicipal Solid W aste Management in Asiaand the Pacific Islands:Challenges and Strategic Solutions.Springer-Verlag,Singapore,pp.157-172.

[129]The W orld Bank,2012.W hat a W aste:A Global Review of Solid W aste M anagement.W ashington,DC.

[130]Thitame,S.N.,Pondhe,G.M.,Meshram,D.C.,2010.Characterisation and composition of municipal solid waste(MSW)generated in Sangamner City,District Ahmednagar,M aharashtra,India.Environ.M onit.Assess.170(1),1-5.

[131]Tolis,A.,Rentizelas,A.,Aravossis,K.,Tatsiopoulos,I.,2010.Electricity and combined heat and power from municipal solid waste;theoretically optimal investment decision time and em issions trading implications.W aste M anage.Res.28(11),985-995.

[132]Troschinetz,A.M.,M ihelcic,J.R.,2009.Sustainable recycling of municipal solid waste in developing countries.W aste M anage.29(2),915-923.

[133]Turconi,R.,Butera,S.,Boldrin,A.,Grosso,M.,Riga monti,L.,Astrup,T.,2011.Life cycle assessment of waste incineration in Den mark and Italy using two LCA models.W aste M anage.Res.29(10),S78-S90.

[134]UNEP,2010.W aste and Climate Change:Global trends and strategy framework.United Nations Environmental Programme.(ac cessed 26.06.2017).

[135]Unnikrishnan,S.,Singh,A.,2010.Energy recovery in solid waste management through CDM in India and other countries.Resour.Conserv.Recycl.54(10),630-640.

[136]US-EPA (2001).Landfill Volume III.(accessed 23.08.2016).

[137]Velis,C.,W ilson,D.C.,Rocca,O.,Sm ith,S.R.,M avropoulos,A.,Cheeseman,C.R.,2012.An analytical framework and tool(‘InteRa’)for integrat ing the informal recycling sector in waste and resource management systems in developing countries.Waste Manage.Res.30,43-66.

[138]W ang,Z.,Geng,L.,2015.Carbon em issions calcula tion from municipal solid waste and the influencing factors analysis in China.J.Clean.Prod.104,177-184.W aste Atlas,2016.D-W aste. (accessed08.08.2016)

[139]W hiting,A.,Azapagic,A.,2014.Life cycle environmental impacts of generating electricit y and heat from biogasproduced by anaerobic digestion.Energy 70,181-193.

[140]W ilson,D.C.,Blakey,N.C.,Hansen,J.A.,2010.W aste prevention:its time hascome.W aste M anage.Res.28(3),191-192.

[141]W orldBank,1999.M unicipalsolidwasteincineration.In:TechnicalGuidanceReport.World Bank,Washington,DC,USA,1999.(accessed24.02.2016).

[142]W orld Energy Resources,2016.W orld Energy Council,W aste to Energy.(accessed 21.03.2017).

[143]Yay,A.S.E.,2015.Application of life cycle assessment(LCA)for municipal solid waste management:a case study of Sakarya.J.Clean.Prod.94,284-293.

[144]Yadav,P.,Samadder,S.R.,2017.A global prospective of income distribution and its effect on life cycle assessment of municipal solid waste management:a review.Environ.Sci.Pollut.Res.10(24),9123-9141.

[145]Yap,H.Y.,Nixon,J.D.,2015.A multi-criteria analysisof options for energy recovery from municipal solid waste in India and the UK.W aste Manage.46,265-277.

[146]Yi,S.,Yoo,K.Y.,Hanaki,K.,2011.Characteristicsof MSW and heat energy recovery between residen tial and commercial areas in Seoul.W aste Manage.31(3),595-602.

[147]Yong,Z.,Dong,Y.,Zhang,X.,Tan,T.,2015.Anaerobic co-digestion of food waste and straw for biogas production.Renew.Energy 78,527-530.

[148]Zaman,A.U.,2010.Comparative study of municipal solid waste treatment technologies using life cycle assessment method.Int.J.Environ.Sci.Technol.7(2),225-234.

[149]Zhang,D.Q.,Tan,S.K.,Gersberg,R.M.,2010.M unic ipal solid waste management in China:status,problemsand challenges.J.Environ.Manage.91(8),1623-1633.

[150]Zhang,R.,El-M ashad,H.M.,Hartman,K.,W ang,F.,Liu,G.,Choate,C.,Gamble,P.,2007.Characterization of food waste as feedstock for anaerobic digestion.Biores.Technol.98(4),929-935.

[151]Zhao,X.G.,Jiang,G.W.,Li,A.,W ang,L.,2016.Econom ic analysis of waste-to-energy industry in China.W aste Manage.48,604-618.

[152]Zheng,L.,Song,J.,Li,C.,Gao,Y.,Geng,P.,Qu,B.,Lin,L.,2014.Preferential policiespromote municipal solid waste(MSW)to energy in China:current status and prospects.Renew.Sustain.Energy Rev.36,135-148.

[153]Zhou,H.,M eng,A.,Long,Y.,Li,Q.,Zhang,Y.,2014.An overview of characteristicsof municipal solid waste fuel in China:physical,chem ical composi tion and heating value.Renew.Sustain.Energy Rev.36,107-122.

猜你喜欢

填埋场甲烷废弃物
制造了全世界三分之一废弃物的产业
多功能区固废填埋场建设案例分析
新型医疗废弃物焚化舱
液氧甲烷发动机
电子废弃物
新型GCL复合垂直防渗技术及其在填埋场的应用
论煤炭运输之甲烷爆炸
Gas from human waste
“废弃物”中有孩子的快乐
基于VB6.0的红外甲烷检测仪串行通信的实现