复发/难治弥漫性大B细胞淋巴瘤治疗进展
2017-12-18高广勋
张 娜, 高广勋
(空军军医大学 第四军医大学西京医院 血液内科,陕西 西安 710032)
·专题·
复发/难治弥漫性大B细胞淋巴瘤治疗进展
张 娜, 高广勋
(空军军医大学 第四军医大学西京医院 血液内科,陕西 西安 710032)
弥漫性大B细胞淋巴瘤(DLBCL)是一类异质性明显的淋巴系统恶性肿瘤,也是最常见的非霍奇金淋巴瘤(NHL)亚型,发病率日益增高,极大危害人类健康。经过标准利妥昔单抗联合环磷酰胺、阿霉素、长春新碱和泼尼松(R-CHOP)方案治疗,超过60%患者的生存期显著提高,然而仍有约30%患者出现疾病复发或难治,预后很差。通过对基因表达谱、耐药分子机制等深入研究,新化疗方案及新药不断探索,嵌合抗原受体T细胞治疗等新手段引入,为个体化精准治疗复发/难治DLBCL带来了希望。本文采用文献回顾的方式,重点探讨新药及嵌合抗原受体T细胞(CART)治疗技术在复发/难治DLBCL中的治疗进展。
淋巴瘤, B细胞;复发;受体,抗原,T细胞; 治疗
高广勋,空军军医大学(第四军医大学)西京医院血液内科主任。医学博士,副主任医师,副教授,硕士研究生导师,美国纽约大学医学院访问学者。现任中华医学会血液学分会青年委员会委员,中国老年协会血液学委员会常委兼副总干事,中国抗癌协会血液肿瘤委员会青年委员会委员,全军血液学会青年委员会副主任委员,西安市医学会血液学会副主任委员,陕西省血液学会青年委员会副主任委员,中国医师协会整合血液学分会委员兼秘书,陕西省抗癌协会白血病专业委员会常委,陕西省抗癌协会淋巴瘤专业委员会常委兼秘书。负责国科金、陕西省自然科学基金、吴阶平医学基金多项,第四军医大学教学课题、新技术新业务项目多项,主编(副主编)专著4部,第一或通讯作者发表论文30余篇,其中SCI收录15篇。
非霍奇金淋巴瘤(NHL)是一类异质性明显的恶性血液病,按照组织病理类型分为B细胞NHL(B-NHL)和T/NK细胞NHL(T/NK-NHL)。在B-NHL中,最常见的亚型为弥漫性大B细胞淋巴瘤(DLBCL)。2016版世界卫生组织(WHO)根据形态学、生物学行为、临床表现等将DLBCL分为非特指型(NOS)、亚型和其他独立型3大类。其中DLBCL-NOS最为常见,根据细胞起源和基因表达谱DLBCL-NOS又被分为:生发中心B细胞型(GCB)、活化B细胞型(ABC)和第3型,现将ABC型和第3型统称为Non-GCB型[1-5]。
利妥昔单抗(R)时代前,标准一线治疗方案能使大约50%~60% DLBCL患者达到并维持完全缓解(CR);抗CD20单克隆抗体-R联合环磷酰胺、阿霉素、长春新碱和泼尼松(CHOP)应用于临床显著提高治疗反应(CR率升至75%左右)[6-8]。然而,仍有部分患者出现治疗无应答[尚未达到部分缓解(PR)]或疾病复发,被认为是复发/难治性DLBCL(rr DLBCL)。rr DLBCL患者预后差[9-11],其中只有23%~29%对二线治疗有应答[12-13],中位总生存期(OS)仅为4个月,中位无进展生存期(PFS)仅为3个月,而对三线化疗的反应率仅为14%[12, 14]。初次自体造血干细胞移植(ASCT)后复发患者的中位OS为10个月[10, 15]。如何有效控制疾病进展,延长生存仍是一项亟待解决的临床难题。通过对耐药分子机制研究,挽救性化疗方案优化,新药物探索,新治疗方法引入为攻克rr DLBCL带来新希望。
1 标准治疗
PARMA[9]研究发现高剂量化疗(HDC)联合ASCT可以显著改善rr DLBCL患者预后,因此,HDC-ASCT被建议作为rr DLBCL的标准治疗。此外,荷兰比利时血液肿瘤协作组进行的一项前瞻性随机对照研究(Hovon-44)证实R联合HDC-ASCT能使患者明确获益[16]。目前R-HDC-ASCT已成为对化疗依旧敏感的rr-DLBCL的主要治疗方法[17]。另一方面,R维持治疗对于ASCT后复发的DLBCL似乎没有明确意义[18]。
治疗rr DLBCL常采用的化疗方案包括利妥昔单抗联合依托泊苷、类固醇、阿糖胞苷、顺铂(R-ESHAP);利妥昔单抗联合卡铂、异环磷酰胺、依托泊苷(R-ICE);依托泊苷、阿霉素、环磷酰胺、长春新碱、强的松和利妥昔单抗(DA-EPOCH-R);利妥昔单抗联合吉西他滨、奥沙利铂(R-GEMOX);利妥昔单抗联合吉西他滨、顺铂和地塞米松(R-GDP)、利妥昔单抗联合卡氮芥、依托泊苷、阿糖胞苷、美法仑(R-BEAM)等[16, 18-24]。研究发现高剂量(1 000 mg/m2)R与标准剂量(375 mg/m2)比较,联合BEAM序贯ASCT治疗复发侵袭性B-NHL并不使患者显著受益[25]。此外,ORCHARRD[26]研究比较Ofatumumab(人源IgG1k抗CD20单克隆抗体,与R的靶抗原表位不同)和R分别联合DHAP-ASCT治疗rr DLBCL的疗效,结果表明O-DHAP 和R-DHAP作为挽救性化疗方案,疗效差异无统计学意义[27]。CORAL[18]研究比较R-DHAP和 R-ICE分别联合HDC-ASCT治疗侵袭性rr B-NHL(包括rr DLBCL)的疗效,发现R-ICE和R-DHAP的总缓解率(ORR)、3年无事件生存率(EFS)和OS差异均无统计学意义。随后的研究进行亚组分析发现R-DHAP优于R-ICE可改善GCB-DLBCL患者的预后[28-29]。目前抢救性化疗和移植预处理方案仍然不理想,最佳方案仍有待确定[9, 17]。
对R-CHOP等方案耐药的rr DLBCL,后续使用前期化疗方案极可能是无效的,甚至对多种化疗药物交叉耐药[30-31]。尽管给予挽救性化疗和ASCT等,许多患者最终仍死于恶性肿瘤,3年OS仅为30%[29,32]。此外,虽然异基因造血干细胞移植(allo-HSCT)为治愈淋巴瘤提供了可能,但由于移植相关死亡率高,这种治疗策略可能对患者造成极大的负面影响。因此,rr DLBCL患者唯一可行的是参与临床试验,用新的试验性药物或方法进行治疗[29, 32]。
2 新药物的应用
rr DLBCL耐药机制可分为以下3种:①先天性耐药,肿瘤细胞遗传学异质性,耐药与重现性基因突变和基因异常表达有关[33];②获得性耐药,经过前期化疗药物筛选,肿瘤细胞遗传学和表观遗传学不稳定,耐药肿瘤克隆亚群出现,最终导致标准方案化疗失败[34-35];③肿瘤细胞微环境/细胞黏附介导耐药,源于肿瘤细胞与正常基质组织之间的相互作用[36-38]。由于DLBCL遗传学异质性,多重耐药分子机制在rr DLBCL耐药中发挥作用。研究者从分子机制、相关信号通路等出发,试图通过新药干预肿瘤细胞代谢、增殖、生长等,进而达到治疗目的。
2.1信号通路抑制剂
2.1.1B细胞抗原受体(BCR)信号通路抑制剂 慢性活化BCR介导信号被认为在ABC-DLBCL发病机制中扮演重要角色[39-40],而其主要依赖于布鲁顿酪氨酸激酶(BTK),脾酪氨酸激酶(SYK)和磷酸肌醇3-激酶(PI3K)[41]。研究发现在rr ABC-DLBCL中BTK,SYK和PI3K激酶异常活化[39-40]。SYK或BTK的siRNA和小分子抑制剂可以选择性抑制BCR信号,并诱导依赖于BCR信号的DLBCL细胞系凋亡[42-45]。 Ibrutinib是一种选择性、不可逆的BTK抑制剂[46]。一项Ibrutinib(PCI-32765)治疗80例rr DLBCL患者的Ⅰ/Ⅱ临床试验表明:其在ABC亚型中ORR为37%,CR率为16%;而在GCB亚型中治疗反应较差[47-49]。因此,Ibrutinib作用局限于BCR信号持续活化ABC-DLBCL[47, 50-51]。值得注意的是,Ibrutinib并没有抑制BCR野生型且具有MyD88和(或)CARD11突变的肿瘤细胞生长和存活,表明Ibrutinib特异性靶向作用有赖于慢性活化的BCR信号[50-51]。
Fostamatinib(R406,FosD)为选择性口服小分子SYK抑制剂,一项Ⅰ/Ⅱ研究中,超过20%的患者为多次rrDLBCL,使用fostamatinib治疗后CR仅为5%[52]。一项Ⅱ期研究报告68例rr DLBCL患者接受fostamatinib治疗,结果表明双臂ORR为3%,13%患者临床受益(≥疾病稳定),而受益者主要集中在GCB亚型(4例),没有1例是ABC亚型[53]。虽然患者对fostamatinib表现出良好的耐受性,但疗效却差强人意,与其他BCR通路抑制剂不同,在ABC亚型中没有观察到治疗反应[53]。
2.1.2蛋白激酶Cβ(PKCβ)抑制剂 PKCβ Ⅱ是一种丝氨酸/苏氨酸激酶亚型,通过BCR信号通路扩增在rr DLBCL中高表达,而PKCβ Ⅱ过表达与同源性磷酸酶-张力蛋白(PTEN)缺失引起的不良预后相关,被认为是潜在治疗靶点[54-56]。研究表明PKCβⅡ的两种选择性抑制剂-sotrastaurin(AEB071)和enzastaurin,在体内外试验可以诱导ABC-DLBCL细胞凋亡和抑制增殖[57-58]。目前一项评估sotrastaurin治疗具有CD79A或CD79B突变的rr DLBCL的国际多中心I期临床研究正在进行中[59]。一项纳入55例rr DLBCL的Ⅱ期研究显示,患者每日接受enzastaurin治疗直至疾病进展或出现不可耐受的毒性。其中12例经过2周期治疗获得无进展(FFP),4例实现超过20个月FFP[60-61]。另一项随机Ⅱ期研究初步结果显示在100例中高危DLBCL患者,enzastaurin联合R-CHOP治疗可有效提高PFS(联合用药与单用R-CHOP,1年PFS分别为71%,52%)[62],但enzastaurin单药治疗rr DLBCL的疗效却十分有限[60-61, 63]。
2.1.3Toll样受体拮抗剂 在DLBCL中,MyD88是NF-κB信号通路中是一个适配转导蛋白,可与 Toll样受体(TLRs)7、8和9相互作用[64]。MyD88异常可活化TLRs, 激活信号通路促进肿瘤细胞存活和增殖。TLR拮抗剂能直接抑制TLR/MyD88信号通路,克服MyD88突变的BCR野生型ABC-DLBCL对Ibrutinib耐药[65]。IMO-8400是一个设计的拮抗寡核苷酸,在DLBCL细胞系中抑制MyD88-L265P配体活化,进而抑制肿瘤细胞生存和增殖,为临床评估提供科学依据[66]。
2.1.4蛋白酶体抑制剂 在ABC-DLBCL中,bortezomib、carfilzomib等蛋白酶体抑制剂可以阻滞细胞周期负性调控因子和NF-κB抑制蛋白IκBα的降解,从而诱导细胞周期阻滞和线粒体依赖性凋亡[67-68]。Bortezomib联合(R)CHOP和DA-EPOCH化疗,可以靶向抑制NF-κB通路并选择性地对rr ABC-DLBCL有效,而对GCB亚型作用微乎其微[69]。Bortezomib单药治疗无明显活性,但联合其他药物可显著提高治疗反应(ABC型和GCB型分别为83%、13%)和延长生存期(中位OS分别是10.8、3.4个月)[69-71]。并非所有的ABC-DLBCL都对bortezomib敏感,蛋白酶体抑制剂不仅触发促凋亡蛋白积累,也可上调抗MCL1[72]、HSP90[73]等凋亡蛋白,导致bortezomib耐药。
2.1.5JAK2/STAT3抑制剂 在rr ABC-DLBCL中,JAK激酶/信号转导与转录激活因子3(JAK/STAT3)信号通路是另一种潜在治疗药物靶点,STAT3活化与R-CHOP治疗后不良OS相关[74]。临床级JAK1和JAK2口服抑制剂 fedratinib(SAR302503/TG101348)或ruxolitinib可以阻碍STAT1和STAT3磷酸化,被提议进行临床评估[75-77]。 此外,新型JAK2/JAK2(V617F)选择性口服抑制剂-pacritinib(SB1518)阻断STAT1、STAT3和STAT5磷酸化,建议在rr DLBCL患者中进一步研究[77-78]。I期剂量与药代动力学/药效学研究显示pacritinib(SB1518)治疗rr B-NHL的安全性和活性,为靶向治疗淋巴瘤提供证据[77-79]。不幸的是,并未在5例rr DLBCL患者中观察到治疗反应,不除外是由于样本量小造成的[77-79]。到目前为止,pacritinib(SB1518)是第一个也是唯一个在rr DLBCL患者中评估的JAK2抑制剂[77]。
2.1.6PI3K/AKT/mTORC1通路抑制剂 PI3K/AKT/mTORC1通路活化在GCB-DLBCL肿瘤细胞生存和化疗耐药中发挥核心作用,是治疗rr GCB-DLBCL的潜在目标[80]。Idelalisib(GS-1101 、CAL-101)是一种PI3K同型体p110δ的选择性可逆口服抑制剂,目前开展多项I期临床试验用于评估单药和联合用药治疗rr DLBCL安全性和有效性[81]。
2.2免疫调节药物 研究证明lenalidomide可以优先抑制ABC-DLBCL细胞的增殖和存活,而对GCB亚型影响非常小[42, 82]。lenalidomide治疗rr DLBCL患者,ABC亚型(ORR为52.9%)比GCB亚型(ORR为8.7%)治疗反应更好[83]。多个Ⅰ/Ⅱ临床试验显示lenalidomide单药治疗rr ABC-DLBCL反应持久(ORR高达53%,CR高达23%)[83-87]。一项随机多中心、开放标签、2/3期临床研究比较lenalidomide单药与研究者选择单药(IC:吉西他滨、R、依托泊苷、奥沙利铂)治疗rr DLBCL的疗效和安全性,结果表明lenalidomide单药治疗更安全有效(lenalidomide与IC的ORR分别为27.5%和11.8%;中位PFS分别为13.6周和7.9周),rr ABC-DLBCL显著获益(ABC亚型和GCB亚型的ORR分别为45.5%、21.4%,PFS分别为82周、13.2周;OS分别为108.4周、30周)[88]。
Hagner等[89]研究发现CC-122是一种类似于沙利度胺的新型免疫调节药物,能直接与E3泛素酶复合物受体蛋白cereblon(CRBN)结合,在体外、体内实验和rr DLBCL患者中促进泛素化和Aiolos及Ikaros降解,通过直接抑制干扰素刺激基因(ISGs)转录和诱导干扰素诱导蛋白,导致DLBCL细胞凋亡。CC-122区别于沙利度胺类似物家族成员,不受细胞起源限制,对ABC亚型和GCB亚型均有抗瘤活性,与Len仅对ABC亚型具有选择性作用形成鲜明对比[89]。因此,CC-122被认为是一种多效性途径修饰新型药物,弥补Len不足,对GCB-DLBCL有潜在治疗活性[89-90]。
2.3组蛋白去乙酰化相关药物 研究发现组蛋白去乙酰化酶(HDAC)小分子抑制剂可作为潜在的药物治疗rr DLBCL[91]。HDAC抑制剂(HDACi)通过多个机制作用于GCB和ABC-DLBCL[91-92],部分HDACi已经批准用于临床或临床试验[93]。去乙酰化酶和泛HDACi可协同杀死DLBCL,尤其是GCB-DLBCL,其治疗rr NHL的ORR为18%、CR为18%,46%患者达到疾病稳定状态[94];其他HDACi(vorinostatromidepsin, panobinostat, mgc0103等)单用或与联合用药治疗rr DLBCL同样取得令人鼓舞的效果[95]。
2.4单克隆抗体
2.4.1程序性死亡受体(PD) 抗体PD-1是表达于T细胞表面的抑制性受体,配体PD-L1和PD-L2表达于抗原呈递细胞,受体配体结合后限制T细胞的活化和增殖[96]。PD-L1在10%~14%DLBCL-NOS中异常高表达提示预后更差[97-99]。一项Ⅱ期临床研究使用抗PD-1抗体pidilizumab治疗ASCT后rr DLBCL,结果显示ORR为51%,ASCT后仍有残留病的患者的CR率达34%;16个月的PFS为72%,高危患者PFS为70%[100]。这些数据表明PD-1是一个治疗rr DLBCL的理想靶标。一项评估抗PD-1抗体单药治疗rr DLBCL的Ⅱ期临床试验正在进行中,此外,抗PD-1抗体联合其他药物治疗的临床试验也在开展[98]。
2.4.2抗体化学毒素偶联物(ADCs) ADCs将细胞毒性药物与肿瘤抗原的特异性抗体结合,是治疗侵袭性B-NHL的新药物,目前主要分子目标是CD19、CD22、CD30等[101-102]。SAR3419是抗CD19抗体与细胞毒美登素DM4偶联ADC,1个潜在的微管蛋白聚合和微管组装抑制剂[101-102]。两个Ⅰ期临床研究评估SAR3419治疗rr DLBCL的安全性和药代动力学,发现SAR3419可以安全地用于治疗rr DLBCL[103-104]。SGN-CD19A是另一个抗CD19特异性ADC,I期研究中期分析显示其对rr DLBCL具有良好的治疗反应(ORR为35%,CR为20%,PR为16%),在rr DLBCL中更高(ORR为55%,CR为32%,PR为23%)[105-106]。
Inotuzumab-ozogamicin是一个亲和优化单克隆抗CD22抗体与DNA损伤的毒素N-乙酰-γ-卡奇霉素-二酰肼(CalichDMH)偶联ADC[107],其治疗反应ORR可达40%~74%,CR可达21%~50%[108]。Brentuximab-vedotin是一种人类CD30特异性ADC[101],大约20%~30% DLBCL表达CD30,而在ABC-DLBCL中表达频率更高[109-110]。Brentuximab-vedotin单药治疗CD30+ rr DLBCL,ORR为44%,CR为17%,截止报道时中位OS为16.6个月[111]。Polatuzumab-vedotin是一个抗CD79B的ADC[101]。Polatuzumab-vedotin治疗rr DLBCL,ORR为56%和CR为14.8%[112-113]。
此外,EZH2抑制剂GSK-126[114]、CPI-360[115]等,BRD4(和BRD2)抑制剂OTX015[116]等, BCL6抑制剂PU-H71[117]等,靶向作用于BCL2、BFL-1和MCL1等凋亡蛋白的小分子BH3类似物ABT-737, ABT-199[118-119]等,涌现的新药在rr DLBCL体内外实验中具有潜在抗肿瘤活性,仍需在临床实验中进一步验证。
3 嵌合抗原受体(CAR)T细胞治疗
CART细胞治疗最早用于2例复发/难治性急性淋巴细胞白血病患者,治疗后获得持久CR[120]。CART细胞治疗是通过基因工程T细胞识别并结合特异性肿瘤相关抗原,经信号转导途径激活T细胞,释放颗粒酶、穿孔素及多种细胞因子引发肿瘤细胞凋亡,从而发挥抗肿瘤效应,目前最常见的靶标为CD19、CD20等。
2015年美国国家癌症研究所(NCI)第一次在DLBCL中证实抗CD19 CART的抗瘤活性,该研究中11例rr B-NHL患者进行FC方案预处理后输注MC63-28Z CART细胞[121]。其中4例rr DLBCL患者2例达到CR[121]。宾夕法尼亚大学的数据证实抗CD19 CART(CTL019)对多种rr NHL(包括DLBCL)具有显著的抗瘤活性,12个月的ORR为68%和PFS为62%[122]。Turtle等[123]报道了32例B-NHL患者接受抗CD19 CART细胞治疗,在所有亚型中都观察到治疗反应,ORR是63%,CR率是33%。 2017年NCI报道了22例rr B-NHL患者接受低剂量FC方案预处理之后输注抗CD19 CART细胞治疗[124]。研究发现在GCB和ABC亚型中均观察到抗瘤活性,总体ORR为73%,CR为55%;rr DLBCL患者ORR为68%,CR为47%[124]。对于化疗耐药DLBCL,低剂量化疗药物不会产生明显抗癌作用,据此,治疗反应可以肯定是由CART疗法所致。更重要的是在这项研究中,CART细胞治疗产生持久的缓解,在12例CR患者中11例持续缓解7~24个月;所有受试者12个月的PFS为63%[124]。CART治疗主要的不良反应是细胞因子释放综合征(CRS)和神经系统毒性,55%的患者经历了3/4级的神经系统疾病毒性,需要给予支持治疗和重症护理[124]。一种FMC63-28Z表达的CART细胞产品(和KTE-C19)指定为axicabtage neciloleucel,目前正在进行商业化推广[121, 124]。Locke等[125]评估了KTE-C19,自体CD3zζ/CD28-CAR T细胞治疗难治性DLBCL。患者接受低剂量FC方案预处理,随后输注KTE-C19(2×106CART/kg目标剂量)[125]。研究结果显示总体ORR为71%,CR率为57%,3例持续CR(12个月以上);7例接受治疗的患者,1例出现4级CRS和神经毒性,分别有1例和4例出现3级CRS和神经毒性[125]。在随后Ⅱ期多中心临床研究中,101例侵袭性rr B-NHL接受axicabtage neciloleucel治疗,初步结果显示ORR是82%,CR率是54%;中位随访时间为8.7个月,ORR是44%,仍有39%患者持续CR[126-127]。
一个多中心试验的JCAR017 抗CD19 CART产品治疗rr B-NHL,研究表明在20例可评价的患者中,ORR为80%,CR率为60%[128]。Abramson等[129]报道了1例rr GCB-DLBCL老年女性,具有BCL2重排和MYC和BCL6多拷贝,经过前期治疗出现系统性和大脑右颞叶疾病复发,接受JCAR017治疗,药代动力学试验显示CART细胞扩增与肿瘤消退是一致的。对于系统性和中枢系统同步复发的患者来说,传统治疗的CR率很低(16%到22%),持久缓解十分罕见[130-131],该累及脑实质的rr DLBCL患者通过JCAR017达到CR[129]。
R成功治疗B-NHL,突显CD20是CART细胞治疗的理想目标。在一项研究中,2例DLBCL患者输注第一代抗CD20 CART作为辅助治疗,之后立即行ASCT,截止相关文章发表时,1例患者获得持续9年的CR,这是仅行ASCT难以实现的,另1例患者CR持续19 个月[132]。另一个临床试验通过质粒电穿孔转染使T细胞表达第三代抗CD20 CART,预处理方案为环磷酰胺,后续3次CART细胞输注,14天皮下注射白细胞介素2[133]。在细胞注入之前未评估的2例患者仍持续CR,1例达到客观PR[133]。第3项研究通过慢病毒载体转导使T细胞表达抗CD20的CAR和4-1BB共刺激域[134],该试验包括7例高强度预处理的DLBCL,随后输注逐渐增加细胞量的CART治疗超过3~4天,5例患者有客观反应,大多为PR,1例患者入组时为PR,之后获得持续14个月的CR,不良事件包括CRS,延迟的肿瘤溶解,淋巴瘤侵及胃肠道导致消化道出血等[134]。虽然目前只获得初步研究结果,但这些数据提示抗CD20 CART对B-NHL具有治疗潜力。
CART治疗是一种快速发展的新兴治疗方式,能够让相当比例rr B-NHL患者获得持久CR。鉴于目前rr DLBCL治疗方法非常有限,在没有其他可行方法的时候,抗CD19 CART细胞治疗诱导缓解能力可持续2~4年,因此CART治疗rr DLBCL是淋巴瘤治疗领域最重要发现。尽管目前该项治疗仍有许多不足,但随着CAR设计优化、毒性改良、联合用药等会使CART细胞治疗更加安全,使更多患者受益。
综上所述,尽管大多数DLBCL患者通过标准一线方案治疗可达到并维持CR,但约30%患者可能经历疾病复发/难治,由于目前仍缺乏行之有效的治疗手段,并且治疗过程异常艰辛,rr DLBCL患者预后很差。随着对疾病机制地进一步研究,bortezomib, lenalidomide, CC122等新药的合理干预,CART治疗方式引入等等,为改善此类患者的不良预后提供了新思路和新方向。
[1] Staudt LM, Dave S. The biology of human lymphoid malignancies revealed by gene expression profiling[J]. Adv Immunol, 2005,87:163-208.
[2] Rosenwald A, Staudt LM. Gene expression profiling of diffuse large B-cell lymphoma[J]. Leuk Lymphoma, 2003,44(Suppl 3):S41-47.
[4] Boudova L, Torlakovic E, Delabie J, et al. Nodular lymphocyte-predominant Hodgkin lymphoma with nodules resembling T-cell/histiocyte-rich B-cell lymphoma: differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma[J]. Blood, 2003,102(10):3753-3758.
[5] Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma[J]. Proc Natl Acad Sci U S A, 2003,100(17):9991-9996.
[6] Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002,346(4):235-242.
[7] Marcus R, Imrie K, Solal-Celigny P, et al. Phase Ⅲ study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma[J]. J Clin Oncol, 2008,26(28):4579-4586.
[8] Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte[J]. Blood, 2010,116(12):2040-2045.
[9] Martelli M, Ferreri AJ, Agostinelli C, et al. Diffuse large B-cell lymphoma[J]. Crit Rev Oncol Hematol, 2013,87(2):146-171.
[10] Van Den Neste E, Schmitz N, Mounier N, et al. Outcomes of diffuse large B-cell lymphoma patients relapsing after autologous stem cell transplantation: an analysis of patients included in the CORAL study[J]. Bone Marrow Transplant, 2017,52(2):216-221.
[11] Jurinovic V, Kridel R, Staiger AM, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy[J]. Blood, 2016,128(8):1112-1120.
[12] Telio D, Fernandes K, Ma C, et al. Salvage chemotherapy and autologous stem cell transplant in primary refractory diffuse large B-cell lymphoma: outcomes and prognostic factors[J]. Leuk Lymphoma, 2012,53(5):836-841.
[13] Elstrom RL, Martin P, Ostrow K, et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel therapeutic strategies[J]. Clin Lymphoma Myeloma Leuk, 2010,10(3):192-196.
[14] Seshadri T, Stakiw J, Pintilie M, et al. Utility of subsequent conventional dose chemotherapy in relapsed/refractory transplant-eligible patients with diffuse large B-cell lymphoma failing platinum-based salvage chemotherapy[J]. Hematology, 2008,13(5):261-266.
[15] Nagle SJ, Woo K, Schuster SJ, et al. Outcomes of patients with relapsed/refractory diffuse large B-cell lymphoma with progression of lymphoma after autologous stem cell transplantation in the rituximab era[J]. Am J Hematol, 2013,88(10):890-894.
[16] Vellenga E, van Putten WL, van 't Veer MB, et al. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial[J]. Blood, 2008,111(2):537-543.
[17] Lukenbill J, Hill B. Relapsed/refractory diffuse large B-cell lymphoma: review of the management of transplant-eligible patients[J]. Leuk Lymphoma, 2015,56(2):293-300.
[18] Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era[J]. J Clin Oncol, 2010,28(27):4184-4190.
[19] Vose JM, Carter S, Burns LJ, et al. Phase Ⅲ randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan(BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial[J]. J Clin Oncol, 2013,31(13):1662-1668.
[20] Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12[J]. J Clin Oncol, 2014,32(31):3490-3496.
[21] Harting R, Venugopal P, Gregory SA, et al. Efficacy and safety of rituximab combined with ESHAP chemotherapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin lymphoma[J]. Clin Lymphoma Myeloma, 2007,7(6):406-412.
[22] Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma[J]. Blood, 2004,103(10):3684-3688.
[23] Martin A, Conde E, Arnan M, et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma: the influence of prior exposure to rituximab on outcome. A GEL/TAMO study[J]. Haematologica, 2008,93(12):1829-1836.
[24] Gopal AK, Press OW, Shustov AR, et al. Efficacy and safety of gemcitabine, carboplatin, dexamethasone, and rituximab in patients with relapsed/refractory lymphoma: a prospective multi-center phase Ⅱ study by the Puget Sound Oncology Consortium[J]. Leuk Lymphoma, 2010,51(8):1523-1529.
[25] Srour SA, Li S, Popat UR, et al. A randomized phase Ⅱ study of standard-dose versus high-dose rituximab with BEAM in autologous stem cell transplantation for relapsed aggressive B-cell non-hodgkin lymphomas: long term results[J]. Br J Haematol, 2017,178(4):561-570.
[26] Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C, et al. Ofatumumab demonstrates activity against rituximab-sensitive and-resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma[J]. Br J Haematol, 2012,156(4):490-498.
[27] van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study[J]. J Clin Oncol, 2016:JCO2016690198.
[28] Thieblemont C, Briere J, Mounier N, et al. The germinal center/activated B-cell subclassification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study[J]. J Clin Oncol, 2011,29(31):4079-4087.
[29] Mounier N, Gisselbrecht C. Relapses, treatments and new drugs[J]. Best Pract Res Clin Haematol, 2012,25(1):49-60.
[30] Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy[J]. Cancer Res, 2007,67(3):1270-1281.
[31] Laursen MB, Falgreen S, Bodker JS, et al. Human B-cell cancer cell lines as a preclinical model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma[J]. Exp Hematol, 2014,42(11):927-938.
[32] Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma[J]. Hematology Am Soc Hematol Educ Program, 2011,2011:498-505.
[33] Tan DE, Foo JN, Bei JX, et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population[J]. Nat Genet, 2013,45(7):804-807.
[34] Morin RD, Gascoyne RD. Newly identified mechanisms in B-cell non-Hodgkin lymphomas uncovered by next-generation sequencing[J]. Semin Hematol, 2013,50(4):303-313.
[35] Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene[J]. N Engl J Med, 1993,329(18):1318-1327.
[36] Shain KH, Dalton WS, Tao J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies[J]. Oncogene, 2015,34(36):4673-4682.
[37] Shain KH, Tao J. The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies[J]. Oncogene, 2014,33(32):4107-4113.
[38] Bjorklund CC, Baladandayuthapani V, Lin HY, et al. Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications[J]. Leukemia, 2014,28(2):373-383.
[39] Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma[J]. Nature, 2010,463(7277):88-92.
[40] Ruminy P, Etancelin P, Couronne L, et al. The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma[J]. Leukemia, 2011,25(4):681-688.
[41] Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution[J]. Semin Cancer Biol, 2013,23(6):410-421.
[42] Yang Y, Shaffer AL, 3rd, Emre NC, et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma[J]. Cancer Cell, 2012,21(6):723-737.
[43] Chen L, Monti S, Juszczynski P, et al. SYK inhibition modulates distinct PI3K/AKT-dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas[J]. Cancer Cell, 2013,23(6):826-838.
[44] Ezell SA, Mayo M, Bihani T, et al. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma[J]. Oncotarget, 2014,5(13):4990-5001.
[45] Mathews Griner LA, Guha R, Shinn P, et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells[J]. Proc Natl Acad Sci U S A, 2014,111(6):2349-2354.
[46] Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy[J]. Proc Natl Acad Sci U S A, 2010,107(29):13075-13080.
[47] Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma[J]. Nat Med, 2015,21(8):922-926.
[48] Cai Q, Westin J, Fu K, et al. Accelerated therapeutic progress in diffuse large B cell lymphoma[J]. Ann Hematol, 2014,93(4):541-556.
[49] Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib(PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies[J]. J Clin Oncol, 2013,31(1):88-94.
[50] Ceribelli M, Kelly PN, Shaffer AL, et al. Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors[J]. Proc Natl Acad Sci U S A, 2014,111(31):11365-11370.
[51] Grisafi D, Maestro A, Grumi C, et al. Ibrutinib: from bench side to clinical implications[J]. Med Oncol, 2015,32(9):225.
[52] Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia[J]. Blood, 2010,115(13):2578-2585.
[53] Flinn IW, Bartlett NL, Blum KA, et al. A phase Ⅱ trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma(DLBCL)[J]. Eur J Cancer, 2016,54:11-17.
[54] Chaiwatanatorn K, Stamaratis G, Opeskin K, et al. Protein kinase C-beta Ⅱ expression in diffuse large B-cell lymphoma predicts for inferior outcome of anthracycline-based chemotherapy with and without rituximab[J]. Leuk Lymphoma, 2009,50(10):1666-1675.
[55] Espinosa I, Briones J, Bordes R, et al. Membrane PKC-beta 2 protein expression predicts for poor response to chemotherapy and survival in patients with diffuse large B-cell lymphoma[J]. Ann Hematol, 2006,85(9):597-603.
[56] Riihijarvi S, Koivula S, Nyman H, et al. Prognostic impact of protein kinase C beta Ⅱ expression in R-CHOP-treated diffuse large B-cell lymphoma patients[J]. Mod Pathol, 2010,23(5):686-693.
[57] Bodo J, Sedlak J, Maciejewski JP, et al. HDAC inhibitors potentiate the apoptotic effect of enzastaurin in lymphoma cells[J]. Apoptosis, 2011,16(9):914-923.
[58] Naylor TL, Tang H, Ratsch BA, et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas[J]. Cancer Res, 2011,71(7):2643-2653.
[59] Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era[J]. Nat Rev Clin Oncol, 2014,11(1):12-23.
[60] Robertson MJ, Kahl BS, Vose JM, et al. Phase Ⅱ study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma[J]. J Clin Oncol, 2007,25(13):1741-1746.
[61] Ysebaert L, Morschhauser F. Enzastaurin hydrochloride for lymphoma: reassessing the results of clinical trials in light of recent advances in the biology of B-cell malignancies[J]. Expert Opin Investig Drugs, 2011,20(8):1167-1174.
[62] Hainsworth JD, Arrowsmith E, McCleod M, et al. Randomized phase Ⅱ study of R-CHOP plus enzastaurin versus R-CHOP in the first-line treatment of patients with intermediate-and high-risk diffuse large B-cell lymphoma(DLBCL): Preliminary analysis[J]. J Clin Oncol, 2011,29(15 suppl):8016-8016.
[63] Carducci MA, Musib L, Kies MS, et al. Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients with advanced cancer[J]. J Clin Oncol, 2006,24(25):4092-4099.
[64] Wang JQ, Jeelall YS, Ferguson LL, et al. Toll-like receptors and cancer: MYD88 mutation and Inflammation[J].Front Immunol, 2014,5:367.
[65] Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer[J]. Nature, 2006,441(7089):106-110.
[66] Suarez-Farinas M, Arbeit R, Jiang W, et al. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation[J]. PLoS One, 2013,8(12):e84634.
[67] Strauss SJ, Higginbottom K, Juliger S, et al. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines[J]. Cancer Res, 2007,67(6):2783-2790.
[68] Schenkein D. Proteasome inhibitors in the treatment of B-cell malignancies[J]. Clin Lymphoma, 2002,3(1):49-55.
[69] Dunleavy K, Pittaluga S, Czuczman MS, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma[J]. Blood, 2009,113(24):6069-6076.
[70] Goy A, Younes A, McLaughlin P, et al. Phase Ⅱ study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma[J]. J Clin Oncol, 2005,23(4):667-675.
[71] Zinzani PL, Pellegrini C, Merla E, et al. Bortezomib as salvage treatment for heavily pretreated relapsed lymphoma patients: a multicenter retrospective study[J]. Hematol Oncol, 2013,31(4):179-182.
[72] Pei XY, Dai Y, Felthousen J, et al. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells[J]. PLoS One, 2014,9(3):e89064.
[73] Shringarpure R, Catley L, Bhole D, et al. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib[J]. Br J Haematol, 2006,134(2):145-156.
[74] Huang X, Meng B, Iqbal J, et al. Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP[J]. J Clin Oncol, 2013,31(36):4520-4528.
[75] Hao Y, Chapuy B, Monti S, et al. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo[J]. Clin Cancer Res, 2014,20(10):2674-2683.
[76] Hu G, Witzig TE, Gupta M. A novel missense(m206K) STAT3 mutation in diffuse large B cell lymphoma deregulates STAT3 signaling[J]. PLoS One, 2013,8(7):e67851.
[77] Derenzini E, Younes A. Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib[J]. Expert Opin Investig Drugs, 2013,22(6):775-785.
[78] William AD, Lee AC, Blanchard S, et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6). 1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene(SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3(JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma[J]. J Med Chem, 2011,54(13):4638-4658.
[79] Younes A, Romaguera J, Fanale M, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes[J]. J Clin Oncol, 2012,30(33):4161-4167.
[80] Pfeifer M, Grau M, Lenze D, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma[J]. Proc Natl Acad Sci U S A, 2013,110(30):12420-12425.
[81] Siddiqi T, Rosen ST. Novel biologic agents for non-Hodgkin lymphoma and chronic lymphocytic leukemia-part 2: adoptive cellular immunotherapy, small-molecule inhibitors, and immunomodulation[J]. Oncology(Williston Park), 2015,29(4):299-308.
[82] Zhang LH, Kosek J, Wang M, et al. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression[J]. Br J Haematol, 2013,160(4):487-502.
[83] Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype[J]. Cancer, 2011,117(22):5058-5066.
[84] Feldman T, Mato AR, Chow KF, et al. Addition of lenalidomide to rituximab, ifosfamide, carboplatin, etoposide(RICER) in first-relapse/primary refractory diffuse large B-cell lymphoma[J]. Br J Haematol, 2014,166(1):77-83.
[85] Wang M, Fowler N, Wagner-Bartak N, et al. Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: a phase Ⅱ clinical trial[J]. Leukemia, 2013,27(9):1902-1909.
[86] Nowakowski GS, LaPlant B, Habermann TM, et al. Lenalidomide can be safely combined with R-CHOP(R2CHOP) in the initial chemotherapy for aggressive B-cell lymphomas: phase I study[J]. Leukemia, 2011,25(12):1877-1881.
[87] Witzig TE, Vose JM, Zinzani PL, et al. An international phase Ⅱ trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma[J]. Ann Oncol, 2011,22(7):1622-1627.
[88] Czuczman MS, Trneny M, Davies A, et al. A phase 2/3 multicenter, randomized, open-label study to compare the efficacy and safety of lenalidomide versus investigator's choice in patients with relapsed or refractory diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2017,23(15):4127-4137.
[89] Hagner PR, Man HW, Fontanillo C, et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL[J]. Blood, 2015,126(6):779-789.
[90] Nowakowski GS. Evolution: IMiDs to PPMs, revolution in DLBCL[J]? Blood, 2015,126(6):698-700.
[91] Cotto M, Cabanillas F, Tirado M, et al. Epigenetic therapy of lymphoma using histone deacetylase inhibitors[J]. Clin Transl Oncol, 2010,12(6):401-409.
[92] Gupta M, Han JJ, Stenson M, et al. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy[J]. Leukemia, 2012,26(6):1356-1364.[93] West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment[J]. J Clin Invest, 2014,124(1):30-39.
[94] Amengual JE, Clark-Garvey S, Kalac M, et al. Sirtuin and pan-class Ⅰ/Ⅱ deacetylase(DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma[J]. Blood, 2013,122(12):2104-2113.
[95] Watanabe T. Investigational histone deacetylase inhibitors for non-Hodgkin lymphomas[J]. Expert Opin Investig Drugs, 2010,19(9):1113-1127.
[96] Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008,26:677-704.
[97] Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma[J]. Blood, 2015,126(19):2193-2201.
[98] Bryan LJ, Gordon LI. Pidilizumab in the treatment of diffuse large B-cell lymphoma[J]. Expert Opin Biol Ther, 2014,14(9):1361-1368.
[99] Rossille D, Gressier M, Damotte D, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial[J]. Leukemia, 2014,28(12):2367-2375.
[100] Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase Ⅱ trial[J]. J Clin Oncol, 2013,31(33):4199-4206.
[101] Feld J, Barta SK, Schinke C, et al. Linked-in: design and efficacy of antibody drug conjugates in oncology[J]. Oncotarget, 2013,4(3):397-412.
[102] Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential[J]. Clin Cancer Res, 2011,17(20):6389-6397.
[103] Younes A, Kim S, Romaguera J, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma[J]. J Clin Oncol, 2012,30(22):2776-2782.
[104] Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma[J]. Clin Cancer Res, 2014,20(1):213-220.
[105] Forero-Torres A, Moskowitz C, Advani RH, et al. Interim analysis of a phase 1, open-label, dose-escalation study of SGN-CD19A in patients with relapsed or refractory B-lineage non-Hodgkin lymphoma(NHL)[J]. Journal of Clinical Oncology, 2014,32(15 suppl):8505-8505.
[106] Albertson TM, Sandalic L, Zhao B, et al. Abstract DDT01-04: SGN-CD19A: a novel Anti-CD19 antibody drug conjugate[J]. Cancer Research, 2014,74(19 Suppl):DDT01-04-DDT01-04.
[107] Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies[J]. Mol Immunol, 2015,67(2 Pt A):107-116.
[108] Fayad L, Offner F, Smith MR, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/Ⅱ study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab[J]. J Clin Oncol, 2013,31(5):573-583.
[109] Hu S, Xu-Monette ZY, Balasubramanyam A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study[J]. Blood, 2013,121(14):2715-2724.
[110] Slack GW, Steidl C, Sehn LH, et al. CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia[J]. Br J Haematol, 2014,167(5):608-617.
[111] Jacobsen ED, Sharman JP, Oki Y, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression[J]. Blood, 2015,125(9):1394-1402.
[112] Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes[J]. Leukemia, 2015,29(7):1578-1586.
[113] Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study[J]. Lancet Oncol, 2015,16(6):704-715.
[114] Harada K, Miyake H, Kumano M, et al. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2[J]. Br J Cancer, 2013,109(9):2389-2395.
[115] Bradley WD, Arora S, Busby J, et al. EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation[J]. Chem Biol, 2014,21(11):1463-1475.
[116] Boi M, Gaudio E, Bonetti P, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs[J]. Clin Cancer Res, 2015,21(7):1628-1638.
[117] Cerchietti LC, Ghetu AF, Zhu X, et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo[J]. Cancer Cell, 2010,17(4):400-411.
[118] Billard C. BH3 mimetics: status of the field and new developments[J]. Mol Cancer Ther, 2013,12(9):1691-1700.
[119] Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature, 2005,435(7042):677-681.
[120] Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. N Engl J Med, 2013,368(16):1509-1518.
[121] Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor[J]. J Clin Oncol, 2015,33(6):540-549.
[122] Schuster SJ, Svoboda J, Dwivedy Nasta S, et al. Sustained remissions following chimeric antigen receptor modified t cells directed against CD19(CTL019) in patients with relapsed or refractory CD19+ lymphomas[J]. Blood, 2015,126(23):183-183.
[123] Turtle CJ, Hanafi LA, Berger C, et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells[J]. Sci Transl Med, 2016,8(355):355ra116.
[124] Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-cd19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels[J]. J Clin Oncol, 2017,35(16):1803-1813.
[125] Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma[J]. Mol Ther, 2017,25(1):285-295.
[126] Locke FL, Neelapu SS, Bartlett NL, et al. Clinical and biologic covariates of outcomes in ZUMA-1: a pivotal trial of axicabtagene ciloleucel(axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma(r-NHL)[J]. Journal of Clinical Oncology, 2017,35(15 Suppl):7512-7512.
[127] Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel(axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma(NHL)[J]. Cancer Research, 2017,77(13 Suppl):CT019-CT019.
[128] Abramson JS, Palomba ML, Gordon LI, et al. CR rates in relapsed/refractory(R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017(TRANSCEND NHL 001)[J]. J Clin Oncol, 2017,35(15 Suppl):7513-7513.
[129] Abramson JS, McGree B, Noyes S, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma[J]. N Engl J Med, 2017,377(8):783-784.
[130] Korfel A, Elter T, Thiel E, et al. Phase Ⅱ study of central nervous system(CNS)-directed chemotherapy including high-dose chemotherapy with autologous stem cell transplantation for CNS relapse of aggressive lymphomas[J]. Haematologica, 2013,98(3):364-370.
[131] Doorduijn JK, van Imhoff GW, van der Holt B, et al. Treatment of secondary central nervous system lymphoma with intrathecal rituximab, high-dose methotrexate, and R-DHAP followed by autologous stem cell transplantation: results of the HOVON 80 phase 2 study[J]. Hematol Oncol, 2016 Aug 17. [Epub ahead of print]
[132] Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans[J]. Biol Blood Marrow Transplant, 2010,16(9):1245-1256.
[133] Till BG, Jensen MC, Wang J, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results[J]. Blood, 2012,119(17):3940-3950.
[134] Wang Y, Zhang WY, Han QW, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells[J]. Clin Immunol, 2014,155(2):160-175.
Therapeuticprogressinrelapse/refractorydiffuselarge-B-celllymphoma
Zhang Na, Gao Guangxun
DepartmentofHematopathology,XijingHospitaloftheAirForeMedicalUniversity(FourthMilitaryMedicalUniversity),Xi′an710032,China
GaoGuangxun,Email:gaoguangxun@fmmu.edu.cn
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous lymphoid malignancy and the most commonly occurring subtype of non-Hodgkin's lymphoma (NHL), with increasing incidence, which is great harmful to human health. More than 60% of DLBLC patients can be cured with standard R-CHOP regimens, however, approximately 30% of patients will develop relapsed/refractory disease that remains a major cause of mortality. With recent advances in gene expression profiling, the in-depth study of the molecular basis of chemotherapy resistance, optimization of salvage chemotherapy regimen, intervention of novel drugs and using chimeric antigen receptor T-cell therapy, and so on, these therapies might provide hope for individual accurate treatment of relapsed/refractory DLBCL. In this review, we focus on the progress of novel drugs and CART therapy in relapsed/refractory DLBCL.
lymphoma, B-cell; recurrence; receptors, antigen, T-cell; therapy
高广勋,Email:gaoguangxun@fmmu.edu.cn
R733.4
A
1004-583X(2017)12-1027-10
10.3969/j.issn.1004-583X.2017.12.004
2017-11-23 编辑:王秋红