明胶海绵复合生长因子加速颌骨骨折愈合的实验研究
2017-10-19唐彦峰陈建霖周云彪
唐彦峰 陈建霖 周云彪
明胶海绵复合生长因子加速颌骨骨折愈合的实验研究
唐彦峰1陈建霖2周云彪1
1.包头市中心医院口腔颌面外科,包头 014040;2.灵武市人民医院口腔科,灵武 750400
目的 探索明胶海绵复合生长因子缓释系统加速颌骨骨折愈合的作用和机制,为临床加速颌骨骨折愈合提供新的方法。方法 按每100 μg基因重组人骨形态发生蛋白(BMP)-2用1 mL重组牛碱性成纤维细胞生长因子(bFGF)液完全溶解后,取40 μL滴加到明胶海绵(0.5 cm×0.5 cm×1.0 cm)组织块中,冻干后制成bFGF/BMP/明胶海绵缓释系统。在12只新西兰大白兔两侧下颌制造线样骨折,左侧为对照组,只用钛板固定;右侧为实验组,钛板下放置bFGF/BMP/明胶海绵。术后2、4、12周行大体观察、X线检查、组织学检查。结果 术后2周,实验组较对照组在骨折断端处可见更多纤维组织长入;术后4周,实验组骨折间隙可见到纤维性骨痂,对照组可见纤维组织和血管长入;12周后实验组和对照组骨折均已完全愈合。结论 bFGF/BMP/明胶海绵能加速骨折愈合,提高骨折愈合效果。
颌骨; 骨折愈合; 碱性成纤维细胞生长因子; 骨形态发生蛋白-2; 明胶海绵
颌面部骨折会给人的外观、功能和心理造成重大打击,严重影响患者正常生活和工作。现有的骨折治疗方法,骨折愈合过程均需3~6个月,加速颌面部骨折愈合已成为研究的热点。随着骨折愈合机制研究的深入,发现生长因子能加速骨折愈合过程,但生长因子局部注射易吸收和降解,难以持久地发挥加速骨折愈合的作用。随着生物材料学的发展,生长因子和生物支架材料复合的缓释系统应运而生。这种缓释系统可在骨折局部缓慢释放生长,并使之持久作用[1]。本研究将明胶海绵复合骨形态发生蛋白(bone morphogenetic protein,BMP)/碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)制成缓释系统,使其作用于兔下颌骨骨折部位,观察骨折愈合过程,以明确其临床应用前景。
1 材料和方法
1.1 材料和设备
基因重组人BMP-2冻干粉(北京中科物源生物技术有限公司),重组牛bFGF液(珠海亿胜生物制药有限公司),明胶海绵(金陵药业股份有限公司),钛板(郑州康德钛制品科技有限公司),组织学切片机(Leica 公司,德国),光学显微镜(Nikon公司,日本)。
1.2 bFGF/BMP/明胶海绵缓释系统的制备
在超净工作台内按每100 μg BMP-2用1 mL bFGF液完全溶解后,用50 μL移液器移出40 μL,滴加到明胶海绵(0.5 cm×0.5 cm×1.0 cm)组织块中,置于-70 ℃冷冻干燥机内快速冻干,制成bFGF/BMP/明胶海绵缓释系统,环氧乙烷消毒,4 ℃保存备用。
1.3 动物实验
健康成年新西兰大耳白兔,由四川大学华西医学中心实验动物中心提供, 重2.5~2.7 kg,共12只。按30 mg·kg-1戊巴比妥钠给予兔耳缘静脉注射麻醉,在其双侧下颌制造线样骨折,并用钛板固定骨折部位。左侧为对照组,只用钛板固定;右侧为实验组,钛板下放置bFGF/BMP/明胶海绵。术后2、4、12周处死动物。直接取出双侧下颌骨,不剥离骨折端处骨膜,4%甲醛固定1周。
1.4 大体观察
观察动物术后饮食情况及术区创口反应;处死动物后,肉眼观察下颌骨骨折部位及周围软组织的生长情况。
1.5 X线检查
对固定后的双侧下颌骨行X线摄片,观察骨折部位的愈合情况。拍摄距离为60 cm,电压为42 kV,电流100 mA,曝光时间0.05 s。
1.6 组织学检查
将固定后的标本放置在30%EDTA中脱钙2周,中途更换脱钙液1次,逐级乙醇脱水,浸蜡,包埋,切片厚度5 μm,进行苏木精-伊红染色和观察。
2 结果
2.1 大体观察
术后所有动物生命体征平稳,体重逐渐增加,术区无红肿、化脓,手术创口均为一期愈合,无1例感染,均存活至预定取材时间。
术后2周,对照组骨折处可见少量新生软组织形成,骨折处活动度较大;实验组骨折处可见较多新生软组织,骨折断端可活动,骨折表面可见软组织覆盖。术后4周,对照组骨折处可见新生软组织存在,骨折下缘可见少量的骨痂形成,骨折断端活动度减小;实验组骨折表面和下缘可见较多骨痂形成,骨折断端未见明显骨折动度。术后12周,对照组骨折处有明显骨痂,骨折无动度,原骨折线可见线样凹陷;实验组骨折已愈合,骨痂明显,骨折无动度,骨折线已消失。
2.2 X线检查
X线检查结果见图1。
图1 2组术后X线检查Fig 1 Postoperative X-ray of two groups
术后2周,2组均可见明显的骨折线。术后4周,对照组骨折断端下缘模糊,下颌下缘可见有骨痂形成;实验组骨折断端边缘模糊,下颌下缘可见有骨痂形成。术后12周,2组骨折愈合良好,无明显骨折线。
2.3 组织学检查
2组术后组织学观察结果见图2。术后2周,对照组骨折断端明显,骨折端可见少量的纤维组织,骨折缝隙内未见纤维组织长入;实验组骨折断端处可见大量的纤维组织,未见到破骨细胞和成骨细胞存在。术后4周,对照组骨折断端内可见大量纤维组织和血管长入,可见到少量的破骨细胞和成骨细胞,骨折两侧可见骨吸收和成骨活动;实验组骨折边缘可见少量间断纤维性骨痂,靠近骨折中心处仍可见纤维组织存在。术后12周,2组骨折处都已骨性愈合,对照组骨折间隙处骨小梁排列方向与周围骨组织不同;实验组骨小梁方向与周围骨组织方向基本一致。
图2 2组术后组织学观察 苏木精-伊红染色 × 100Fig 2 Postoperative histologic observation of two groups hematoxylin-eosin stain × 100
3 讨论
随着社会的发展,颌面部骨折呈逐年上升趋势。因为骨折的愈合期较长,严重影响患者的正常生活,所以颌面部骨折的治疗成为当今研究的热点问题。在骨创伤愈合过程中,大量骨生长因子的协同作用促进骨折的愈合。其中,BMP和bFGF在骨形成过程中起着至关重要的作用。
BMP与诱导原始细胞分化为能形成软骨样和骨样组织的细胞有关。BMP对软骨细胞和成骨细胞的生长、分化和凋亡有着重要的调节作用,可促进软骨和骨组织形成[2-3]。研究表明,BMP-2在骨形成、骨重建和骨修复中起重要作用[4-5],能刺激骨髓间充质干细胞的分化[6],并可以通过增加骨涎蛋白表达来促进下颌缺损的骨形成[7]。成纤维细胞生长因子(fibroblast growth factor,FGF)是关节软骨细胞最明显的有丝分裂原,可以促进毛细血管向骨折段长入,加速软骨细胞的增殖、分化、成熟[8-9]。bFGF可以刺激成骨细胞内骨钙素增加,加快骨的矿化,加快新骨形成。实验研究表明,FGF-2是骨形成的重要调节因子[10],能加速骨祖细胞的增殖[11],用FGF-2治疗动物腓骨骨折组的骨痂量、成骨细胞指数均较对照组有明显增加,最大负荷、最大弯曲强度和最大能量吸收也明显增加[12]。
明胶海绵是一种无毒、无抗原性的蛋白胶类物质,有良好的可压缩性、可吸收性和遇水再膨胀性,无毒副作用,主要用于创面止血。在生产过程中使用氮气使其呈现多孔样结构,极大地增加了对药物的吸收量。另外,明胶可以通过表面与细胞的接触促进细胞的黏附和增殖[13]。明胶海绵在组织中完全吸收需要4~6周。基于这些原因,明胶海绵可作为缓释系统的载体。
目前,复合生长因子和生物支架材料的缓释系统在骨折愈合的研究中愈来愈受到重视。本实验将明胶海绵复合BMP/bFGF制成缓释系统,使其作用于兔下颌骨骨折部位,术后实验组和对照组均未见感染和排异反应,可见明胶海绵有较好的生物相容性和临床应用性;通过与对照组进行大体观察、X线及组织学检查对比发现,术后实验组较早地有纤维肉芽组织长入骨折断端,骨痂形成也明显早于对照组。这表明实验组能明显加速骨折愈合。其原因是明胶海绵在术后较长时间内可通过缓慢释放BMP和bFGF,使其在局部持续维持较长时间的药物浓度;也能在骨折局部起到膜引导骨再生作用,减少局部纤维组织长入骨折线内,避免和减少了影响骨折愈合的不利因素,从而能发挥出更好的加速骨折愈合作用。
综上所述,BMP/bFGF/明胶海绵缓释系统能够在骨折早期缓慢释放生长因子,加速骨折的愈合过程,且具有较好的生物相容性,因此,BMP/bFGF/明胶海绵缓释系统在临床骨折治疗中具有较好的应用前景。
[1] Benghuzzi HA, England BG, Bajpai PK. Tricalcium phosphate amino acid capsules as a drug delivery system for steroid hormones[J]. Biomed Sci Instrum, 1991, 27:197-203.
[2] Nussenbaum B, Teknos TN, Chepeha DB. Tissue engineering:the current status of this futuristic modality in head neck reconstruction[J]. Curr Opin Otolaryngol Head Neck Surg,2004, 12(4):311-315.
[3] Akita S, Fukui M, Nakagawa H, et al. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor[J]. Wound Repair Regen, 2004,12(2):252-259.
[4] James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation[J]. Scientifica(Cairo), 2013, 2013:684736.
[5] Chappuis V, Gamer L, Cox K, et al. Periosteal BMP2 activity drives bone graft healing[J]. Bone, 2012, 51(4):800-809.
[6] Yang W, Guo D, Harris MA, et al. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells[J]. J Cell Sci, 2013,126(Pt 18):4085-4098.
[7] Weng D, Hürzeler MB, Quiñones CR, et al. Contribution of the periosteum to bone formation in guided bone regeneration. A study in monkeys[J]. Clin Oral Implants Res, 2000,11(6):546-554.
[8] Fei Y, Gronowicz G, Hurley MM. Fibroblast growth factor-2,bone homeostasis and fracture repair[J]. Curr Pharm Des,2013, 19(19):3354-3363.
[9] Biver E, Soubrier AS, Thouverey C, et al. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2012, 427(4):737-742.
[10] Naganawa T, Xiao L, Abogunde E, et al. In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice[J]. Biochem Biophys Res Commun, 2006, 339(2):490-498.
[11] Kodama N, Nagata M, Tabata Y, et al. A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation[J]. Bone, 2009, 44(4):699-707.
[12] Radomsky ML, Aufdemorte TB, Swain LD, et al. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates[J]. J Orthop Res, 1999, 17(4):607-614.
[13] Ma Z, Gao C, Gong Y, et al. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility[J]. J Biomed Mater Res, 2002, 63(6):838-847.
(本文编辑 李彩)
Experimental study on accelerated healing of jaw fracture using gelatin sponge compound growth factor
Tang Yanfeng1, Chen Jianlin2, Zhou Yunbiao1.
(1. Dept. of Oral and Maxillofacial Surgery, Baotou Central Hospital, Baotou 014040,China; 2. Dept. of Stomatology, Lingwu People’s Hospital, Lingwu 750400, China)
Supported by: Science and Technology Development Programs of Yinchuan, Ningxia Province (2008061). Correspondence:Zhou Yunbiao, E-mail: 13171208970@163.com.
Objective To explore the role and mechanism of drug delivery systems using growth factor combined with gelatin sponge on accelerating the healing of jaw fracture and to seek better treatment of accelerating the maxillofacial fracture.Methods About 100 μg recombinant human bone morphogenetic protein (BMP)-2 was completely dissolved in 1 mL recombinant bovine basic fibroblast growth factor (bFGF), and the solution (40 μL) was dropped in gelatin sponge (0.5 cm×0.5 cm×1.0 cm). Then, it was freeze dried and prepared into bFGF/BMP/gelatin sponge delivery systems. The mandibular fracture model on two sides were prepared in 12 New Zealand rabbits and randomly divided into two groups. The left side was the control group, which was only fixed with titanium plates. The right side was the experimental group, in which bFGF/BMP/gelatin sponge delivery systems were put under the titanium plates. General observation, X-ray, and histological examination were taken at 2, 4, and 12 weeks after surgery. Results After 2 weeks, more fibrous tissues were seen between the fracture ends in the experimental group than in the control group. After 4 weeks, fibrous fracture callus were seen in the fracture gap in the experimental group. The ingrowths of fibrous tissue and blood vessels were seen in the control group. The fracture healing of the experimental group was significantly faster than the control group at 2 and 4 weeks. After 12 weeks, the experimental and control groups all healed completely. Conclusion bFGF/BMP/gelatin sponge can accelerate and improve fracture healing;thus, it has better clinical application prospect.
jaw; fracture healing; basic fibroblast growth factor; bone morphogenetic protein-2; gelatin sponge
R 782.4
A
10.7518/hxkq.2017.05.012
2016-12-08;
2017-03-09
宁夏银川市科技攻关课题(2008061)
唐彦峰,主治医师,硕士,E-mail:tyf1983@sina.com
周云彪,副主任医师,E-mail:13171208970@163.com