APP下载

丙环唑对玉米幼苗生长的调控及其相关机制

2017-10-17邢嘉鹏段留生张明才李召虎

作物学报 2017年11期
关键词:丙环唑叶鞘葡聚糖

郝 岭 邢嘉鹏 段留生 张明才 李召虎

植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院农学系, 北京 100193

丙环唑对玉米幼苗生长的调控及其相关机制

郝 岭 邢嘉鹏 段留生 张明才*李召虎

植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院农学系, 北京 100193

丙环唑(propiconazole, 简称 Pcz)作为一种杀菌剂被广泛应用于作物生产, 它同时具有调节作物生长发育的作用, 但关于丙环唑在玉米上的应用研究较少。本研究以玉米品种郑单 958为材料, 研究丙环唑(Pcz)对玉米苗期植株生长、细胞形态和激素信号的影响。结果表明, Pcz处理显著抑制玉米中胚轴与胚芽鞘的生长, 降低株高, 缩短叶片和叶鞘长度, 减小叶夹角, 同时显著抑制叶片和叶鞘细胞的纵向伸长, 促使叶枕细胞排列由疏松变为紧密; Pcz处理显著降低玉米中赤霉素(GA1和GA3)的含量, 下调GA合成酶基因GA3ox1基因的表达, 上调GA钝化酶基因GA2ox5和GA2ox8表达, 而GA合成酶基因GA20ox1的表达呈现先上调后下调模式; Pcz处理显著降低油菜素内酯(BR)含量, 但BR合成基因CPD和DWF4的表达上调, 可能是由于反馈调节。此外, Pcz处理下调扩张蛋白基因EXPA4、EXPA5和木葡聚糖内糖基转移酶/水解酶基因XTH1、XET1的表达。综上所述, Pcz处理调节GA和BR信号转导途径, 抑制GA和BR在植株内积累, 调控扩张蛋白、木葡聚糖内糖基转移酶/水解酶基因表达, 操纵细胞生长, 有效调控株型。

玉米; 丙环唑; 油菜素内酯; 株型; 细胞形态

Abstract:Propiconazole (Pcz) has been widely used as fungistat in crop production. Meanwhile, Pcz can be used as plant growth regulator to influence plant growth. There is less study on the application of Pcz in maize. The present experiment using maize variety Zhengdan 958 was conducted to study the effect of Pcz on maize seedling growth, cell morphology and hormone signal.Pcz treatment inhibited the growth of mesocotyl and coleoptile, reduced plant height, shortened the length of sheath and leaf, and decreased leaf angle significantly. At the same time, longitudinal growth of sheath and leaf was inhibited and the shape of pulvinus cells changed from loosened rectangle type or oval type to closely spaced spindle cell. Furthermore, the GA (GA1and GA3) content was reduced significantly and the expression of GA biosynthesis gene GA3ox1 was down-regulated, the expression of GA2ox5 and GA2ox8, genes involved in GA inactivation, was up-regulated, and the expression of GA biosynthesis gene GA20ox1 was up-regulated at the beginning and down-regulated later; the BR content was reduced significantly and the expression of BR biosynthesis genes CPD and DWF4 was up-regulated, which might be feedback regulated by endogenous BR levels.In addition, the expression of expansin genes EXPA4, EXPA5 and xyloglucan endotransglucosylase/hydrolase genes XTH1 and XET1 was down-regulated. In conclusion, Pcz treatment can adjust the signal transduction of GA and BR, inhibit the accumulation of GA and BR, regulate the expression of EXPs and XTHs, control the cell growth, and adjust plant type of maize effectively.

Keywords:Maize; Propiconazole; Brassinosteroids; Phenotype; Cellular morphology

玉米(Zea mays L.)作为我国主要的粮食作物, 对确保我国的粮食安全有着至关重要的作用。目前, 提高玉米产量主要是通过培育良种和改进栽培措施[1]。大量研究表明, 群体密度的增加有利于提高玉米产量, 然而密度增大会降低玉米抗倒伏的能力[2-3]。化控技术是栽培措施中很重要的一项, 有利于改善株型和构建理想群体, 为玉米的高产稳产提供保障[4]。如冠菌素作为一种玉米延缓剂, 既能延缓节间伸长生长, 又能增加产量[5]; 氮肥和己·乙水剂的配合使用, 可改善株型和群体结构, 提高春玉米的产量[6];乙烯利可塑造凹形冠层结构, 提高群体的光合利用率, 从而提高玉米产量[7]; 乙烯利使玉米基部节间缩短增粗, 有助于提高玉米的抗倒伏能力等[8]。

在农业上, 三唑类化合物不仅可被用作杀菌剂和除草剂, 而且可以用作植物生长调节剂, 调节植物的生长。如多效唑有利于提高油菜田块的抗倒伏与抗裂角能力, 从而提高产量[9]; 在小麦上, 多效唑提高了茎秆木质素合成相关酶的活性和木质素含量, 进而增强了茎秆抗倒伏能力[10]; 烯效唑可以缩短水稻基部节间长度, 增加节间粗度, 增强水稻抗倒伏能力[11]; 烯效唑拌种能改善茎秆质量, 提高茎秆的抗倒性, 增加产量[12]。丙环唑(propiconazole,简称 Pcz)是一种三唑类复合物, 化学名称为, 1-[2-(2,4-二氯苯基)-4-丙基-1,3-二氧戊环-2-甲基]-1氢-1,2,4三唑。在生产中, 丙环唑被广泛用作杀菌剂[13]。另外, 丙环唑可以用作植物生长调节剂, 调控植物的生长, 作用位点是钝叶醇 14R-脱甲基酶[14]。但是, 关于丙环唑调节玉米生长的研究比较少。本研究对丙环唑调控玉米幼苗形态的机制做了初步的探讨, 旨在为丙环唑在玉米栽培上的合理使用提供参考。

1 材料与方法

1.1 试验材料

供试玉米品种为郑单958; RNA提取试剂购买于华越洋生物科技有限公司; M-MLV反转录试剂盒购买于北京天根生化科技有限公司; 荧光定量试剂购买于宝生物工程大连有限公司TaKaRa; 丙环唑和石蜡购买于西格玛奥德里奇(上海)贸易有限公司Sigma-Aldrich。试验中所用其他试剂均为进口或国产分析纯试剂。

1.2 试验设计

于恒温培养箱中进行沙培试验, 设4个Pcz浓度0、1.0、5.0 和 10.0 µmol L–1, 其中 0 µmol L–1为对照, 每个处理3个重复, 完全随机排列。每个重复选饱满一致种子40粒, 用10% NaClO消毒, 在相应浓度Pcz溶液中室温浸种12 h。之后, 播于含300 mL相应浓度 Pcz溶液的蛭石中, 保持相对含水量约为80%。25℃, 黑暗培养 7 d, 测定幼苗中胚轴和胚芽鞘的长度。

于中国农业大学人工气候室中进行水培试验,设置 4个 Pcz浓度 0、0.2、1.0和 5.0 µmol L–1, 其中0 µmol L–1为对照, 每处理4个重复。利用石英育苗至一叶一心, 挑选生长一致的幼苗移至霍格兰营养液中。2 d后, 移入含有不同浓度Pcz的霍格兰营养液中培养, 所有处理和重复完全随机排列。培养条件为光(24℃)、暗(18℃)各 12 h, 室内相对湿度50%~60%, 光照强度 400 µmol m–2s–1。3 d 后取样,观察、照相记录表型, 测定株高、根长、叶鞘长和生物量等指标。

1.3 RNA的提取和Real-time PCR分析

Pcz处理3 h、12 h、24 h和72 h取样, 选取玉米第2叶鞘下部, 长度约为3 cm。将样品立即置于液氮中冷冻, 并保存于-80℃冰箱。采用华越洋生物公司的植物总RNA提取试剂盒提取玉米的总RNA,反转录成 cDNA。使用 TaKaRa的 Real-time PCR(SYBR)试剂盒, 荧光定量 PCR 仪(ABI7500)进行Real-time PCR。以ZmACTIN为内参, 测定相关基因的表达(表 1)。15 µL 反应体系含 2×SYBR Premix Ex Taq 7.5 µL, 50×ROX Reference Dye II 0.3 µL, 正向引物和反向引物(10 µmol L–1) 各 0.3 µL, cDNA 模板(40 ng µL–1) 1.5 µL, ddH2O 5.1 µL。采用两步法反应程序, 95℃ 5 min; 95℃ 10 s, 60℃ 34 s, 40个循环。根据各样品特定的荧光阈值下的 Ct值, 采用 2–ΔΔCt法计算基因在不同样品中的相对表达量。

1.4 石蜡切片

Pcz处理后7 d, 取第2叶的叶片、叶鞘和叶枕中部, 长度为3~4 mm, 制作石蜡切片。将上述样品立即用含 70%酒精的 FAA固定液固定。抽真空10~20 min, 固定24 h。用酒精梯度脱水、浸蜡包埋后, 将修整好的蜡块置于石蜡切片机切片, 轮转式切片机型号为Leica RM2235, 厚度为10 µm。展片后经梯度二甲苯和酒精脱蜡, 用番红-固绿染色, 加拿大树胶封片, Olympus彩色CCD光学显微镜观察和照相。

1.5 玉米样品中内源激素含量的测定

Pcz处理3 d取样, 称取每份样品0.2 g, 3个重复。用3 mL样品提取液研磨和提取。离心, 取上清液, 用氮气吹干, 用酶联免疫法测定[15]。

1.6 数据处理

采用 Microsoft Excel 2010和SPSS 18.0软件处理数据和统计分析。

表1 qRT-PCR引物Table 1 Primers used for qRT-PCR

2 结果与分析

2.1 Pcz对玉米幼苗植株生长的调控

从图1看出, 黑暗条件下, 用不同浓度的Pcz处理玉米7 d, 与对照相比, 玉米幼苗中胚轴的长度分别减小了12%、23%和29%, 胚芽鞘的长度分别减小了22%、36%和39%。由此可知, Pcz处理显著地抑制了中胚轴和胚芽鞘的生长, 且随着 Pcz浓度的增大抑制程度加强。

图1 Pcz对玉米幼苗中胚轴和胚芽鞘生长的影响Fig. 1 Effects of Pcz on mesocotyl and coleoptile of maize seedlings

从图2和表2可见, 水培条件下, 用不同浓度的Pcz处理 3 d, 与对照相比, 玉米幼苗的生长受到了显著的影响: 地上部生物量减少, 株高降低, 叶片和叶鞘的长度变短, 叶片卷曲, 叶夹角变小。根的生长也受到了一定程度的抑制, 其中5 µmol L–1Pcz对根的抑制达到了显著水平。

图2 Pcz对玉米幼苗生长的影响Fig. 2 Effects of Pcz on growth of maize seedlings

2.2 Pcz对玉米幼苗GA和BR的含量及其相关基因表达的调控

从图3可看出, Pcz处理玉米幼苗叶鞘中GA和BR含量与对照相比分别下降30%和80%, 差异达到显著水平。从图4可看出, Pcz处理下, GA合成酶基因GA20ox1和GA3ox1的表达模式不同: GA20ox1在处理24 h表达上调, 72 h表达下调; 而GA3ox1在处

理过程中, 表达水平一直显著低于对照。GA钝化酶基因GA2ox5和GA2ox8在处理24 h表达上调, 加速GA的代谢, 72 h表达回调。然而, BR合成酶基因CPD和DWF4的表达与对照相比, 有上调的趋势。

表2 Pcz对玉米幼苗株高、根长和干物质积累的影响Table 2 Effects of Pcz on plant height, root length, and dry matter accumulation of maize seedlings

图3 Pcz对玉米幼苗叶鞘中GA和BR含量的影响Fig. 3 Effects of Pcz on the content of GA and BR in sheath of maize seedlings

图4 Pcz对玉米幼苗叶鞘中GA和BR代谢相关基因表达的调控Fig. 4 Regulation of Pcz on the expression of GA and BR metabolism genes in sheath of maize seedlings

2.3 Pcz处理对玉米叶片各组织细胞显微结构的影响

从玉米幼苗叶片的纵切面看出(图 5-a), 与对照相比, Pcz处理下叶片表皮细胞纵向伸长受阻, 引起叶片长度变短; 从玉米幼苗叶鞘的纵切面看出(图5-b), 与对照相比, Pcz处理细胞轴向生长受到了抑制, 引起叶鞘变短; 从玉米幼苗叶枕的纵切面看出(图 5-c), 对照叶枕细胞排列较为松散, 但 Pcz处理叶枕细胞排列紧密, 且细胞显著变小, 这导致了叶夹角变小。

图5 Pcz对玉米幼苗叶片不同组织中细胞显微结构的影响Fig. 5 Effects of Pcz on cellular microstructures of leaf different tissues of maize seedlings

2.4 Pcz处理对叶鞘扩展蛋白与木葡聚糖内糖基转移酶基因表达的调控

从图6可看出, 与对照相比, Pcz处理扩张蛋白基因EXPA4的表达3 h下调40%左右, 24 h表达回调;EXPA5的表达在12 h和24 h下调50%左右, 72 h表达回调。与对照相比, Pcz处理后, 木葡聚糖内糖基转移酶XTHs家族的XTH1和XET1基因的表达一直处于被抑制的状态, 特别是XET1基因下降了5倍左右。

3 讨论

利用丙环唑处理玉米不仅可以降低株高, 而且使叶夹角变小, 玉米株型更加紧凑(图2)。石蜡切片结果表明, 丙环唑处理抑制了叶片和叶鞘细胞的纵向伸长, 缩短了叶片和叶鞘长度, 而叶枕细胞变小且排列紧密, 引起了叶夹角变小(图5), 这与BR合成和信号途径关键基因缺失的突变体表型类似[16-17]。定量分析发现, 丙环唑处理显著降低了玉米中 BR的含量, 但BR合成的关键酶基因CPD和DWF4的表达上调(图3和图4), 这可能是由于BR合成限速酶的表达受到了反馈调节[18]。前人研究发现, 丙环唑处理抑制十字花科植物和玉米幼苗的生长, 且抑制效果可以被BR特异性恢复[19-20]。通过本研究, 也说明丙环唑通过影响BR合成进而实现对玉米株型的调控。

细胞伸长的过程受到细胞壁松弛因子的调节,扩张蛋白和木葡聚糖内糖基转移酶/水解酶是两大类重要的细胞壁松弛因子, 在调控细胞生长方面发挥了重要的作用[21-22]。众多研究表明, GA诱导扩张蛋白和木葡聚糖内糖基转移酶/水解酶基因的表达活性, 调控细胞壁的延伸。如在高羊茅草中, GA调控扩张蛋白基因 EXPA4、EXPA5、EXPA6、EXPA8和XTHs家族的XET1、XET3基因的表达, 促进叶片细胞的生长[23]; 在棉花中, GA调控扩张蛋白和木葡聚糖内糖基转移酶/水解酶基因的表达, 促进棉花纤维的生长[24]; 在水稻的生长发育过程中, GA调控扩张蛋白的表达使细胞壁松弛[25-26]。本研究分析了丙环唑对玉米扩张蛋白家族基因 EXPA4、EXPA5和XTHs家族基因XTH1和XET1表达的调控表明, 丙环唑处理使扩张蛋白基因的表达在短期内受到抑制,后期表达回调; 木葡聚糖内糖基转移酶/水解酶基因一直处于被抑制的状态(图6)。另外, 丙环唑处理使GA合成酶基因 GA3ox1表达下调, GA代谢基因GA2ox5和GA2ox8表达上调, 导致GA的含量显著下降。由此推测丙环唑处理下, GA含量降低, 致使扩张蛋白和木葡聚糖内糖基转移酶/水解酶基因的表达下调, 从而影响细胞的生长。

图6 Pcz对玉米叶鞘中EXPA4、EXPA5、XTH1和XET1基因表达的调控Fig. 6 Regulation of Pcz on expression levels of EXPA4, EXPA5, XTH1, and XET1 in sheath of maize seedlings

油菜素内酯(BRs)是一种甾醇类植物激素, 主要通过调节细胞的伸长和分裂, 促进植物器官的生长[27]。BR能够调控细胞壁松弛因子的表达, 促进细胞的生长。在拟南芥中, BR处理使扩张蛋白基因AtEXPA5、AtEXPA1和 AtEXPA8表达上调, 促进细胞伸长[28-29];Bae等[30]发现在拟南芥种子萌发和产量形成的过程中,BR可以促进外源基因 IbEXP1的表达; 在鹰嘴豆中,BR通过调节扩张蛋白基因 CaEXPA1、CaEXPA2、CaEXPA3、CaEXPA4和木葡聚糖内糖基转移酶/水解酶基因 CaXTH1的表达, 调控植物的生长[31-32];Keuskamp等[33]发现在拟南芥中, BR通过调控特定XTHs家族基因的表达, 影响下胚轴的生长。而在本研究中, 丙环唑处理使玉米中BR的含量显著下降。由此推测, 丙环唑处理下, BR可能通过调控细胞伸长基因的表达, 进而影响细胞生长。

4 结论

丙环唑处理显著抑制玉米中胚轴和胚芽鞘的生长, 降低株高, 缩短叶片和叶鞘长度, 减小叶夹角;同时显著抑制叶片和叶鞘细胞的纵向伸长, 使叶枕细胞的排列更加紧密。丙环唑处理可调节GA和BR信号转导途径, 抑制GA和BR在植株内积累, 调控扩张蛋白、木葡聚糖内糖基转移酶/水解酶基因表达,操纵细胞生长, 有效调控株型。本研究发现丙环唑可作为一种植物生长调节剂, 有效地塑造玉米株型,在生产上具有一定的应用价值。

[1]Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002, 75: 161–169

[2]程富丽, 杜雄, 刘梦星, 靳小利, 崔彦宏. 玉米倒伏及其对产量的影响. 玉米科学, 2011, 19(1): 105–108 Cheng F L, Du X, Liu M X, Jin X L, Cui Y H. Lodging of summer maize and the effects on grain yield. J Maize Sci, 2011, 19(1):105–108 (in Chinese with English abstract)

[3]王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰,李少昆. 密度对玉米产量( >15 000 kg·hm–2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437–3445 Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M,Li J, Liang M X, Li S K. Effects of density on maize yield andyield components. Sci Agric Sin, 2012, 45: 3437–3445 (in Chinese with English abstract)

[4]李宁, 李建民, 翟志席, 李召虎, 段留生. 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. 玉米科学, 2010, 18(6):38–42 Li N, Li J M, Zhai Z X, Li Z H, Duan L S. Effects of chemical regulator on the lodging resistance traits, agricultural characters and yield of maize. J Maize Sci, 2010, 40(6): 38–42 (in Chinese with English abstract)

[5]卫晓轶, 张明才, 李召虎, 段留生. 冠菌素对玉米节间伸长和产量性状的影响. 科技导报, 2011, 29(20): 63–67 Wei X Y, Zhang M C, Li Z H, Duan L S. Effect of coronatine on internode elongation and yield characters of maize. Sci Technol Rev, 2011, 29(20): 63–67 (in Chinese with English abstract)

[6]张倩, 张明才, 刘明, 谭伟明, 肖佳雷, 来永才, 李召虎, 段留生. 氮肥-生长调节剂对寒地春玉米植株形态及产量的互作效应研究. 中国农业大学学报, 2014, 19(5): 29–37 Zhang Q, Zhang M C, Liu M, Tan W M, Xiao J L, Lai Y C, Li Z H, Duan L S. Interaction of nitrogen fertilizer and plant growth regular on plant morphology and yield in spring maize of cold region. J Chin Agric Univ, 2014, 19(5): 29–37 (in Chinese with English abstract)

[7]蔡永旺, 张英华, 周顺利, 鲁来清, 王志敏. 利用乙烯利塑造夏玉米凹形冠层对产量及其相关性状的影响. 玉米科学, 2010,18(3): 90–94 Cai Y W, Zhang Y H, Zhou S L, Lu L Q, Wang Z M. Effects of concave canopy structure shaped with ethephon on yield and its correlated characters in summer maize. J Maize Sci, 2010, 18(3):90–94 (in Chinese with English abstract)

[8]叶德练, 王庆燕, 张钰石, 李建民, 段留生, 张明才, 李召虎.乙烯利和氮肥对玉米基部节间性状和抗折断力的调控研究.中国农业大学学报, 2015, 20(6): 1–8 Ye D L, Wang Q Y, Zhang Y S, Li J M, Duan L S, Zhang M C, Li Z H. Study of ethephon and nitrogen rate in regulating the basal internode characteristics and breaking resistance of maize. J Chin Agric Univ, 2015, 20(6): 1–8 (in Chinese with English abstract)

[9]杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响.作物学报, 2015, 41: 938–945 Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S,Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment.Acta Agron Sin, 2015, 41: 938–945 (in Chinese with English abstract)

[10]陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44: 3529–3536 Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y,Wang Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat.Sci Agric Sin, 2011, 44: 3529–3536 (in Chinese with English abstract)

[11]张倩, 张海燕, 谭伟明, 段留生. 30%矮壮素·烯效唑微乳剂对水稻抗倒伏性状及产量的影响. 农药学学报, 2011, 13:144–148 Zhang Q, Zhang H Y, Tan W M, Duan L S. Effects of 30%chlormequat-uniconazole micro-emulsion on lodging resistance and yield of rice. Chin J Pest Sci, 2011, 13: 144–148 (in Chinese with English abstract)

[12]刘星贝, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 吴东倩, 易泽林.烯效唑干拌种对甜荞茎秆抗倒性能的影响. 作物学报, 2016,42: 93–103 Liu X B, Wang C, Hu D, Yang H, She H Z, Ruan R W, Wu D Q,Yi Z L. Effects of seed dressing with uniconazole powder on lodging resistance of culm in common buckwheat. Acta Agron Sin, 2016, 42: 93–103 (in Chinese with English abstract)

[13]Yoshida Y, Aoyama Y. Sterol 14α-demethylase and its inhibition:structural considerations on interaction of azole antifungal agents with lanosterol 14α-demethylase (P-45014DM) of yeast. Biochem Soc Trans, 1991, 19: 778–782

[14]Raymond, S B, David T C, Geoffre A C. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry, 1989,28: 1791–1804

[15]唐尚格, 夏玉先, 裴炎. 间接酶联免疫法测定植物内源激素.西南农业大学学报, 1991, 13: 183–186 Tang S G, Xia Y X, Pei Y. Quantitative analysis of plant hormones with indirect enzyme-linked immunosorent assay (ELISA).J Southwest Agric Univ, 1991, 13: 183–186 (in Chinese with English abstract)

[16]Liu T, Zhang J, Wang M Y, Wang Z Y, Li G F, Qu L, Wang G Y.Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep,2007, 26: 2091–2099

[17]Kir G, Ye H, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A D, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826–839[18]Kim H B, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S,An C S, Lee I, Hwang I, Choe S. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol,2006, 140: 548–557

[19]Sekimata K, Han S Y, Yoneyama K, Takeuchi Y, Yoshida S,Asami T. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. J Agric Food Chem, 2002,50: 3486–3490

[20]Hartwig T, Corvalan C, Best N B, Budka J S, Zhu J Y, Choe S,Schulz B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One, 2012, 7(5): e36625

[21]Cosgrove D J. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol, 2015, 25: 162–172

[22]Rose J K, Braam J, Fry S C, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature.Plant Cell Physiol, 2002, 43:1421–1435

[23]Xu Q, Burgess P, Xu J, Meyer W, Huang B. Osmotic stress- and salt stress-inhibition and gibberellin- mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion.Environ Exp Bot, 2016, 131: 101–109

[24]Li Y, Tu L, Ye Z X, Wang M J, Gao W H, Zhang X L. A cottonfiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep, 2015, 34: 1539–1549

[25]Yi L, Kende H. Expression of α-expansin and expansin-like genes in deepwater rice. Plant Physiol, 2002, 130: 1396–1405

[26]Huang L, Niu X, Xiong F, Zou X, Liu Y. Construction and genetic transformation of the RNA interference vector and functional analysis of rice expansin gene OsEXPB7. Chin J Appl Environ Biol, 2013, 19: 198–204

[27]Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. Plant Cell, 2012, 24: 842–857

[28]Bergonci T, Silvafilho M C, Moura D S. Antagonistic relationship between AtRALF1 and brassinosteroid regulates cell expansion-related genes. Plant Signal Behav, 2014, 9(10): e976146

[29]Bai M Y, Fan M, Oh E, Wang Z Y. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell, 2012, 24: 4917–4929

[30]Bae J M, Kwak M S, Noh S A, Oh M J, Kim Y S, Shin J S. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res, 2014, 23: 657–667

[31]Sánchez M A, Mateos I, Labrador E, Dopico B. Brassinolides and IAA induce the transcription of four α-expansin genes related to development in Cicer arietinum. Plant Physiol Biochem, 2004,42: 709–716

[32]Romo S, Jiménez T, Labrador E, Dopico B. The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiol Biochem,2005, 43: 169–176

[33]Keuskamp D H, Sasidharan R, Vos I, Peeters A J, Voesenek L A,Pierik R. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J,2011, 67: 208–217

Growth Regulation and the Mechanism of Propiconazole in Maize Seedlings

HAO Ling, XING Jia-Peng, DUAN Liu-Sheng, ZHANG Ming-Cai*, and LI Zhao-Hu
Engineering Research Center of Plant Growth Regulator, Ministry of Education / Department of Agronomy, College of Agronomy and Biotechnology,China Agricultural University, Beijing 100193, China

10.3724/SP.J.1006.2017.01603

本研究由引进国际先进农业科学技术计划(948计划)项目(2011-G19)资助。

This study was supported by the Introduction of International Advanced Agricultural Science and Technology Program (948 Program, 2011-G19).*

张明才, E-mail: zmc1214@163.com, Tel: 010-62733049

联系方式: E-mail: hao_ling2011@163.com

): 2017-03-07; Accepted(接受日期): 2017-05-10; Published online(网络出版日期): 2017-06-09.

URL: http://kns.cnki.net/kcms/detail/11.1809.S.20170609.1745.004.html

猜你喜欢

丙环唑叶鞘葡聚糖
19%啶氧.丙环唑微乳剂分析方法研究
β-1,3葡聚糖对肉鸡免疫器官指数和抗氧化能力的影响
36%丙环唑·咪鲜胺悬浮剂的高效液相色谱分析
球茎茴香储藏的关键技术
α-葡聚糖酶在甜菜制糖中的试验研究
辣蓼及其常见混伪品种的真伪鉴别
α-葡聚糖酶在制糖工业中的应用
枯草芽孢杆菌(Bucillus subtilis)所产β-葡聚糖在日化产品中的应用研究
稻秆叶鞘表面雾滴沉积特性试验
几种丙环唑及其复配剂对水稻纹枯病的试验效果初报